Sector 1.1

Sector of Computer Logic in Information Processes

Head of the Sector – Dr.Sc. (Mathematics), Prof. Vassily Lyubetsky

Tel.: (095) 299-83-54, (095) 413-46-43; E-mail: lyubetsk@iitp.ru

The leading researchers of the laboratory include:

Dr.Sc. (Math.)

A. Chagrov

Dr.Sc. (Math.)

N. Vereshchagin

Dr.Sc. (Biol.)

M. Gelfand

Dr.

K. Gorbunov

Dr.Sc. (Math.)

P. Golubtsov

Dr.

V. V'yugin

DIRECTIONS OF ACTIVITY:

MAIN RESULTS

An algorithm of less then quadratic complexity that embeds many given genome trees into the initial species tree, evaluates the quality of this simultaneous embedding and iteratively transforms the species tree to increase monotonously the quality of this joint embedding is investigated.

An algorithm of quadratic complexity that searches for a common signal in a given set of DNA sequences, i.e. a system of similar words of a fixed length and satisfying some certain conditions, is under development.

A method for extraction of regulatory signals in DNA of bacteria based on comparative analysis of several genomes has been developed. Some bacterial regulons (purine, aromatic amino acids, arginine, riboflavin, SOS-response etc.) and regulons of archaebacteria (purine, tryptophan, heat shock, nitrogen utilization) are described. A method for prediction of trasporter specificity based on analysis of their regulation has been proposed, that allowed to describe important families of purine and riboflavin transporters.

RNA regulatory signals in Haemophilus influenzae ribosomal protein operons (spc, S10, L11, S15), and attenuators of transcription of aromatic amino acid biosynthetic operons (trpEDCBA, phe, pheST) from Salmonella typhi, Yersinia pestis, Erwinia herbicola, Vibrio cholerae, Haemophilus influenzae, Actinobacillus actinomycetem-comitans, Xanthonomas cmpestris, and Chlamydia trachomatis have been predicted using comparison with known Escherichia coli signals.

A method of prediction of human genes in genome sequences with errors has been developed. The algorithms has been implemented and is currently being tested.

A model theoretic description of some certain classes of information transformers (ITs) and axiomatic description of an arbitrary class of ITs is developed. The Bayes approach to decision making problems is developed and the Bayes principle is proved for the classes of linear, many-valued, fuzzy ITs and for any axiomatic given class of ITs.

The principles of construction of categories of dynamical ITs are investigated. A category of linear nondeterministic discrete time dynamical ITs is constructed. The problem of optimal synthesis of an image formation system with continuous vision field is investigated and reduced to Fredholm equation of the second kind. The proposed algorithm for this problem is tested.

A variant of the Shannon-McMillan-Breiman theorem for individual random sequences is proved. The evaluations of complexity of the applicability for the maximal series success length law are worked out. The dependence of likelihood functions on the complexity of probability distribution is investigated. The equivalence of two definitions of Bernoully sequence (by Kolmogorov and on the base of permutation measures) is proved.

An experimental evaluation of the preciseness of lineal properties of the space is done. The experimental data shows that if the observer was asked first to divide visually a given interval into n parts and then to visually lengthen the n-th part by n times, then, in average, the resulted inreval is more than the initial one, if n is odd, and is less, if n is even. And the relative error is essentially less if the length of the initial interval is no more than 10 sm. An experimental investigation of the preciseness of evaluation of the length of an interval under the condition of Ponzo illusion is done. An experimental evaluation of the quantitative value for some word combinations with the meaning of general quantifiers (“half”, “most”, “allmost all” etc.) in the Russian language is done. Some preliminary models that aimed to explain these experiments are proposed. (These experiments were made in collaboration with Laboratory of Bioinformatics of Cell Processes and Motocontrol).

A new effectively defined wide class of descriptions (theories) such that any sentence can be reduced to quantifier free or some other simple form is deduced.

A translation of formal proofs in a classical theory into the proofs in the corresponding intuitionistic theory of the lineal complexity is deduced; in part, it makes possible, having a classical proof of existence of some dependent magnitude, to construct effectively an algorithm that calculates this magnitude.

A general method of construction of essentialy more simple algorithms calculate boolean functions (i.e. boolean decision trees of the height 2M log N) is deduced. The notions can be defined as boolean functions such that i-th argument shows the existence/absence of the i-th indication for a given object. More simple algorithms to calculate boolean functions give more adequate representations of the corresponding notions.

It is proved that for any words x and y there exist transformers p (of x into y) and q (of y into x) such that the both have the minimal length and “independent” (i.e., with the joint information of the order of log of the complexities of x and y). If the “independence” is understood as log of the conditional complexities x/y and y/x, then such p and q may not exist.

It is proved that if a word x is simple relatively any rather complex word y, then there exists a simple algorithm that transforms allmost all y into the given x.

The complexity of some important tasks that can be formulated in terms of conjunction, disjunction and implication of two sets of words is calculated. A propositional formula that is not deducible in the intuitionistic propositional calculus such that the complexity of the corresponding task is of the logarithmical order of the argument complexities is found.

It is proved that there exist such words A, B, C that the complexity of the formula “A or B imply C” is close to the sum of Kolmogorov complexities K(C|A) + K(C|B).

The upper evaluations of the (tree) width of graphs that do not contain the flat lattices of the given size r as minors are proved. These evaluations are exp(p(r)), where p is a fixed polynom, for arbitraty graphs and lineal relatively r for flat graphs. This gives the same evaluations for the size of the graph CF-grammar bores all graphs of a bounded degree and do not contain the flat lattices of the given size as minors. The definition of n-divisible graph (which is ised in computer genetics) is proposed, and a polynomial algorithm that checks wherther a given graph G is n-divisible for a given n and makes the n-division is done.

It is proved that any generally complete (by Post) tabular modal logic that extends K4 has the interpolation property (the important connection of the notions of “information saturation” for any logic).

It is proved that there exists modal logic that have inffinitely many complete (by Post) extentions but all such extentions are tabular.

Decision algorithms for modal predicate logics K, K4, T, S4, S5 relatively to the classical predicate logic is done and proved.

PUBLICATIONS IN 1999

  1. Любецкий В.А. Логика устной речи в сравнении с логикой письменной речи. Труды Второго Российского философского конгресса, Екатеринбург, Издательство Уральского университета, часть 1, 1999, с. 222.
  2. Горемыкина Г.И., Любецкий В.А. О преобразовании классических выводов в интуиционистские. Труды второй международной конференции "Смирновские чтения", Москва, ИФРАН, 1999, сс. 38-41.
  3. Любецкий В.А., Чернавский А.В. Об основах интеллектуальных процессов. Труды Второго Российского философского конгресса, Екатеринбург, Издательство Уральского университета, часть 1, 1999, сс. 223-224.
  4. Любецкий В.А. Логические модели процессов информационного взаимодействия. Труды Международной конференции РАН "Проблемы управления и моделирования в сложных системах", Самара, 20-26 июля 1999 г., сс. 133-145.
  5. Кузнецов Н.А., Любецкий В.А. Компьютерная логика в информационных процессах. Проблемы передачи информации, том 35, вып. 2, 1999, сс. 107-111.
  6. Lyubetsky V.A. Topics in Classical and Intuitionistic Model Theory. Patras University press and Simon Inc., Patras (Greece) and Stockholm (Sweden), 1999, 520 p.
  7. Vereshchagin N.K. Relativizability in Complexity Theory. In: L. Beklemishev, M. Pentus, N. Vereshchagin. Provability, Complexity, Grammars, AMS Translations 2, vol. 192, 1999, pp. 87-176.
  8. Muchnik An.A., Romashchenko A.E., Shen A., Vereshchagin N.K. Upper semi-lattice of binary strings with the relation "x is simple conditional to y". Proceedings of IEEE conference on Computational Complexity, Atlanta (USA), IEEE Publishing House, 1999, pp. 62-73.
  9. Raz R., Tardos G., Verbitsky O., Vereshchagin N. Arthur-Merlin Games in Boolean Decision Trees. Journal of Computer and Systems Sciences, vol. 59, 1999, pp. 534-560.
  10. Razborov A., Vereshchagin N. One Property of Cross-Intersecting Families. Electronical Colloquium on Computational Complexity (http://www.eccc.uni-trier.de/eccc), TR99-014, 1999, 3 p.
  11. Durand B., Shen A., Vereshchagin N. Descriptive complexity of computable sequences. Lecture Notes in Computer Sciences, vol. 563, 1999, pp. 153-162.
  12. Верещагин Н.К., Шень А. Начала теории множеств. М.: Московский центр непрерывного математического образования, 1999, 127 с.
  13. Горбунов К.Ю. Структурные свойства контекстно-свободных грамматик. Автореферат диссертации на соискание ученой степени кандидата физико-математических наук. М.: МГУ, 1999, 11с.
  14. Diestel К, Jensen T.R., Gorbunov K.Yu., Thomassen C. Highly Connected Sets and the Excluded Grid Theorem. Journal of Combinatorial Theory, Series B, vol. 75, 1999, pp. 61-73.
  15. Чагров А.В., Чагрова А.А. Бесконечные множества несводимых модальностей в нормальных модальных логиках. Логические исследования. Выпуск 5. М., Наука, 1999, cс. 150-159.
  16. Чагров А.В. Строго импликативные формулы в модальных логиках, близких к интуиционисткой. Логические исследования. Выпуск 6. М.: Российская политическая энциклопедия (РОССПЭН), 1999, сс. 69-75.
  17. Чагров А.В. К вопросу об обратной математике модальной логики. Смирновские чтения, вторая международная конференция. М.: ИФРАН , 1999, сс. 72-75.
  18. Чагров А.В. Конструктивная логика. В кн.: Философская энциклопедия. М.: ИФРАН (в печати).
  19. Chagrov A.V. A First-Order Effect and Modal Propositional Formulas. In: Logic and Foundation of Mathematics. Selected Contributed Papers of the Tenth International Congress of Logic, Methodology and Philosophy of Science. A.Cantini, E.Casari, P.Minary (Eds.) Florence, August 1995. Kluwer Academic Publishers, 1999, pp. 209-218.
  20. Zakharyaschev A.V., Wolter F., Chagrov A. Advanced Modal Logic. In: New Handbook of Philosophical Logic. D. Gabbay (Еd.), North-Holland, 1999, pp. 20-205.
  21. Чагров А.В. Логика, не являющаяся ни конечно-значной, ни бесконечно-значной. Труды научно-исследовательского логического семинара ИФРАН. М.: Наука, 1999, 8 с. (в печати).
  22. V'yugin V.V. Algorithmic complexity and stochastic properties of finite binary sequences. The Computer Journal, vol. 42, no. 4, 1999, pp. 294-317.
  23. Голубцов П.В. Преобразователи информации и проблема сравнения информативности. Труды второго российского философского конгресса, Екатеринбург, Издательство Уральского университета, часть 1, 1999, с.209.
  24. Голубцов П.В. Алгебраический подход к определению информативности. Труды международной конференции РАН "Проблемы управления и моделирования в сложных системах", Самара, 20-26 июля 1999 г., сс. 106-111.
  25. Голубцов П.В. Aксиоматическое описание категорий преобразователей информации. Проблемы передачи информации, т. 35, № 3, 1999, сс. 109-127.
  26. Zhang Y., Golubtsov P., Carpio R., Wagner L. Wafer Mapping for Stepper Effects Characterization. SPIE '99 in Santa Clara, Santa Clara, March 16, 1999, сс. 27-30.
  27. Витрещак А.Г., Гельфанд М.С. Аттенюация транскрипции оперонов биосинтеза ароматических аминокислот гамма пурпурных бактерий. Научный совет по молекулярной биологии и генетике РАН. Школа молодых ученых "Молекулярная биология и биомедицина", Черноголовка, 12-16 апреля 1999 г. (в печати).
  28. Гельфанд М.С., Витрещак А.Г., Миронов А.А. Информационное взаимодействие и регуляторные образцы в бактериальных геномах. Труды международной конференции "Проблемы управления и моделирования в сложных системах", Самара, 20-26 июля 1999 г., сс. 101-105.
  29. Витрещак А.Г., Бансал А.К., Титов И.И., Гельфанд М.С. Компьютерный анализ регуляторных сигналов в полных бактериальных геномах. Инициация трансляции оперонов рибосомальных белков. Биофизика, том 44, вып. 4, 1999, сс. 601-610.
  30. Gelfand M.S., Mironov A.A., Jomantas J., Kozlov Y.I., Perumov D.A. A conserved RNA structure element involved in the regulation of bacterial riboflavin synthesis genes. Trends in Genetics, vol 15, no. 11, 1999, pp. 439-442.
  31. Mironov A.A., Koonin E.V., Roytberg M.A., Gelfand M.S. Computer analysis of transcription regulatory patterns in completely sequenced bacterial genomes. Nucleic Acids Research, vol. 27, no. 14, 1999, pp. 2981-2989.
  32. Frishman D, Mironov A, Gelfand M. Starts of bacterial genes: estimating the reliability of computer predictions. Gene, vol. 234, no. 2, 1999, pp. 257-265.
  33. Gelfand M.S., Dubchak I., Dralyuk I., Zorn M. ASDB: database of alternatively spliced genes. Nucleic Acids Research, vol. 27, no. 1, 1999, pp. 301-302.
  34. Миронов А.А., Гельфанд М.С. Компьютерный анализ регуляторных сигналов в полных бактериальных геномах. Участки связывания PurR. Молекулярная биология, т. 33, № 1, 1999, сс. 127-132.
  35. Миронов А.А., Фришман Д., Гельфанд М.С. Компьютерный анализ регуляторных сигналов в полных бактериальных геномах. Участки связывания рибосом. Молекулярная биология, т. 33, № 1, 1999, сс. 133-140.
  36. Кривенцева Е.В., Макеев В.Ю., Гельфанд М.С. Статистический анализ экзон-интронной структуры генов высших эукариот. Биофизика, т. 44, № 4, 1999, сс. 595-600.
  37. Боровина Т.А., Назипова Н.Н., Овербик Р., Гельфанд М.С. Статистический анализ и предсказание бактериальных сайтов связывания рибосом. Биофизика, т. 44, № 4, 1999, сс. 611-619.
  38. Миронов А.А., Гельфанд М.С. Компьютерный анализ регуляторных сигналов в полных бактериальных геномах. Участки связывания LexA и DinR. Молекулярная биология, т. 33, № 5, 1999, сс. 772-778.
  39. Миронов А.А., Гельфанд М.С. Вычислительная биология на рубеже десятилетий. Молекулярная биология, т. 33, № 6 1999, c. 969-984.
  40. Kriventseva V., Gelfand M.S. Statistical analysis of the exon-intron structure of higher and lower eukaryote genes. Journal of Biomolecular Structure and Dynamics, vol. 17, no. 2, 1999, pp 281-288.
  41. Дружинин Ю.Г., Чернавский А.В. Задачи оценки геометрических структур воспринимаемого пространства в геометрической психофизике. Труды международной конференции РАН "Проблемы управления и моделирования в сложных системах", Самара, 20-26 июля 1999 г., сс. 112 -116.