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Abstract

We continue the classification of binary extended nonlinear perfect codes of length

16. In the previous papers we enumerated all such codes of ranks at most thirteen

over the field F2. Here we classified the extended binary perfect (16, 4, 211)-codes

of rank 14 over F2. We proved that among non-equivalent extended binary perfect

(16, 4, 211)-codes there are exactly 1708 non-equivalent codes with rank 14 over F2.

Among these codes there are 844 codes, classified by Phelps (Solovieva-Phelps codes)

and 864 other codes obtained by construction of Etzion-Vardy and by generalized

doubling construction. Thus, the only open question in classification of extended binary

perfect (16, 4, 211)-codes is classification of such codes of rank 15 over F2.

§ 1. Introduction

One of the interesting open problems of algebraic coding theory is the classification of

nonlinear binary perfect codes with Hamming parameters. Even for the smallest nontrivial

length n = 15 or n = 16 (for the extended codes) this problem is very far from the full

solution. There are several papers dedicated to the characterization of such codes constructed

by several methods. The first family of the binary perfect nonlinear (n = 2m − 1, d =

3, N = 2n−m) codes was described by Vasiliev in [1]. Hergert [2] has found all non-equivalent

Vasiliev’s codes of length 15: there are 19 such non-equivalent codes (including the linear

code). Malugin [3] showed that the number of non-equivalent extended Vasiliev’s codes of

length 16 is equal to 13. He classified also in [3] all the nonlinear perfect codes of length
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16, which can be obtained from the Hamming code by the simultaneous translate of non-

overlapping components of different directions. The number of non-equivalent such codes of

length 15 occurs to be equal to 370, and the number of such extended perfect codes of length

16 is equal to 248. Solov’eva [4] and Phelps [5] derived the construction, which doubles

the length of code (in common terminology, symmetric X4 construction). Phelps [6] proved

that there are exactly 963 non-equivalent binary extended perfect codes (including the linear

code) of length 16, obtained by this construction. Etzion and Vardi [7] showed that there are

codes of rank 14, which can not be obtained by the Solovieva - Phelps doubling construction.

They generalized this construction and gave examples of such codes of rank 14, which can

not be obtained by the Solovieva-Phelps doubling construction.

This paper is a natural continuation of our previous results [8, 9] where we started the

systematic investigation of codes of length 15 and 16 with given rank over the field F2. In

[8] we have described all non-equivalent binary extended perfect nonlinear codes (16, 4, 211)

of rank at most 13 over F2. All such codes can be obtained by the generalized concatenated

(GC) construction [10-13]. Our results of paper [8] can be formulated as follows. Among

non-equivalent binary extended perfect codes of length n = 16 there are exactly:

– one code of rank 11 (the Hamming code);

– 12 codes of rank 12 (the Vasiliev codes);

– 272 codes of rank 13 (the GC-codes with the length of inner codes nb = 4 only).

In paper [9] we have classified all non-equivalent binary perfect codes of length n = 15.

In particular, we have proved that among such codes there are:

– one code of rank 11 (the Hamming code);

– 18 codes of rank 12 (the Vasiliev codes);

– 758 codes of rank 13 (the GC-codes with the length of inner codes nb = 4 only).

The purpose of this paper is to classify all non-equivalent binary extended perfect codes

of length 16 of rank 14 over F2. We describe the general doubling construction of extended

binary perfect codes of length n = 16 and of rank 14 over F2, which generalize the construc-

tion of Etzion and Vardi [7]. This new construction produces all such codes of length 16
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with a rank 14 over F2. We can formulate the result of our paper as follows. Among the

binary extended perfect codes of length n = 16 there are exactly:

– one code of rank 11 (the Hamming code);

– 12 codes of rank 12 (the Vasiliev codes);

– 272 codes of rank 13 (the GC-codes with the length of inner codes nb = 4 only);

– 1708 codes of rank 14, in particular, 844 Solovieva-Phelps codes and 864 codes, obtained

by Etzion-Vardi construction and its generalization.

The number of such codes of rank 15 is still remain open.

The paper is organized as follows. In § 2 we give some notations and terminology. In § 3

we describe the Solovieva-Phelps construction (symmetric X4 construction) and the doubling

construction of Etzion-Vardi of extended binary perfect (n, 4, 2n−m−1)-codes of length n =

2m. In § 4 we give some preliminary results concerning the structure of extended binary

perfect (16, 4, 211)-codes with rank 14 over F2. The general doubling construction of codes

of length 16 and rank 14 is given in § 5. The paragraph § 6 is dedicated to construction of

all canonical (16, 4, 211)-codes with rank 14 over F2. All together there are exactly 10312

such distinct codes with kernels of sizes from 4 to 256. We give the number of such codes for

each size of the kernel. In § 7 we give the main results: classification of the non-equivalent

extended binary perfect codes of length 16 with rank 14 over F2.

§ 2. Preliminary results and terminology

Let E be a finite alphabet of size q : E = {0, 1, ..., q − 1}. A q-ary code of length n

is an arbitrary subset of En. Denote such q-ary code C with length n, with the minimal

distance d and cardinality N as (n, d, N)q-code and as (n, d, N)-code we denote such binary

code C, i.e. when q = 2. Denote by wt(x) the Hamming weight of vector x over E. For a

binary (i.e. q = 2) code C denote by 〈C〉 the linear envelope of words of C over F2. The

dimension of space 〈C〉 is called the rank of C over F2 and is denoted rank(C). For a binary

code C call a kernel and denote ker(C) the set of all vector x from En stabilizing this code:

C + x = {c + x : c ∈ C} = C where + denotes component wise addition modulo two. It is
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clear, that ker(C) is a linear space and for the code C with zero vector ker(C) is a subset of

C.

For any two subsets Y and Z of En denote by d(Y, Z) the minimal distance between Y

and Z:

d(Y, Z) = min{d(y, z) : y ∈ Y, z ∈ Z}.

For vector v = (v1, ..., vn) ∈ En denote by supp(v) its support, i.e. the set of indices with

nonzero positions:

supp(v) = {i : vi �= 0}.

Denote by v̄ a vector, which is a complementary to v, i.e. v̄i = vi + 1.

If E = Fq is a finite field of order q, the q-ary (n, d, N)-code A which is a linear k-

dimensional space over Fq is denoted by [n, k, d]q-code and by [n, k, d] code for q = 2. For

binary vectors x = (x1, · · · , xn) and y = (y1, · · · , yn) denote by (x · y) = x1y1 + · · · + xnyn

their inner product over F2. For a linear [n, k, d]-code A denote by A⊥ its dual code:

A⊥ = {v ∈ F
n
2 : (v · c) = 0, ∀ c ∈ A}.

It is clear that A⊥ is a linear [n, n − k, d⊥] code with some minimal distance d⊥.

Denote by En
ev the set of all binary vectors of length n of even weight. Let Jn = {1, 2, ..., n}

be the coordinate set of En and let Sn be the full group of permutations of n elements. For

any i ∈ Jn and π ∈ Sn, define the image of i under the action of π by π(i). For any set X

of En and any π ∈ Sn denote πX = {π(x) : x ∈ X}.
Define the action of En

ev on itself by shifts, i.e. for any y ∈ En
ev and h ∈ En

ev, set

h(y) = h + y. We denote this group of actions by Hn
ev. Note that shifts are equivalent to

coordinate-wise permutations of the binary alphabet.

Let Gn = <Sn, H
n
ev > be the group generated by Hn

ev and Sn. Then G = Sn � Hn
ev is the

semi-direct product of Sn and Hn
ev, where Hn

ev is a normal subgroup of Gn.

§ 3. Constructions of Solovieva-Phelps and Etzion-Vardi

For extended binary perfect codes Solovieva-Phelps construction (or, symmetric X4-

construction) looks as follows. Let n = 2m and let En
ev be the even subspace of En. Assume
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that En
ev can be presented in two ways as follows:

En
ev =

n⋃
i=1

Ai =

n⋃
j=1

Bj ,

where Ai and Bj are extended binary perfect codes of length n for all i = 1, ..., n and

j = 1, ..., n. Then the following statement is valid [4, 5].

Proposition 1 (Solovieva [4] - Phelps [5] construction). Let π ∈ Sn be any permutation.

Then the set

X =

n⋃
i=1

{(a | b) : a ∈ Ai, b ∈ Bπ(i)}

is an extended binary perfect (2n, 4, 22n−m−2)-code.

This construction occurs to be very useful for the construction of codes with the given

rank and kernel (see [13]). In particular, it is possible to construct the codes of length n = 2m

with rank n − 2 over F2.

In [6] Phelps enumerated a large class of the extended binary perfect (16, 4, 211)-codes,

obtained by Solovieva-Phelps construction. In order to formulate his results we need some

definitions. Let A1, ..., An and B1, ..., Bn be two partitions of En
ev into extended perfect

(n, 4, 2n−1−m)-codes Ai and Bj where n = 2m. Two such partitions A1, ..., An and B1, ..., Bn

of En
ev are equivalent, if there is an element g ∈ Gn and a permutation τ ∈ Sn such that

(gA1, ..., gAn) = (Bτ−1(1), ..., Bτ−1(n)).

Phelps [6] proved that there are exactly 10 non-equivalent partitions of E8
ev, which we denoted

here by L0, L1, ..., L9, connected with Phelps partitions Pi as follows:

Li = Pi, i = 0, 1, 2, 3, 4, 5, 6, and Li = Pi+1, i = 7, 8, 9. (1)

We say that L0, L1, ..., L9 are canonical partitions.

Definition 1 Denote by StabG8(Lk) the stabilizer of Lk in G8 and by Qk a group of

permutations of its components induced by automorphisms from G8 (found by Phelps [6] for

all non-equivalent (canonical) partitions Lk, k = 0, 1, . . . , 9) :

Qk = {π ∈ S8 : ∃g ∈ StabG8(Lk) : gLk,s = Lk,π−1(s), k = 0, 1, . . . , 7}.
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Using all non-equivalent partitions L0, . . . , L9 of E8
ev, Phelps [6] defined the following set

of Solovieva-Phelps codes of length 16.

Definition 2 (Solovieva-Phelps codes). Let Li and Lj be any two partitions from the

set {L0, L1, . . . , L9} and let π ∈ S8 be any permutation. Denote by C = C(Li, Lj , π) the

resulting extended perfect (16, 4, 211)-code, obtained by Proposition 1. Denote by CSP the set

of all codes C(Li, Lj, π) when Li and Lj run over all set {L0, L1, . . . , L9} and when π runs

over S8.

Theorem 1 (Phelps [6]). The set CSP of codes C(Li, Lj, π) consists of exactly 963 non-

equivalent extended perfect binary (16, 4, 211)-codes, namely including:

– 1 code of rank 11 (the Hamming code);

– 7 codes of rank 12 (the Vasiliev codes);

– 110 codes of rank 13 (the GC-codes with length of the inner codes nb = 4);

– 845 codes of rank 14.

Classifying all codes of length 16 rank 14, we repeated all computations for the codes

from the set CSP of rank 14 over F2, and we have found one omission in the results of Phelps

[6].

Theorem 2 The set CSP of codes C(Li, Lj , π) consists of exactly 844 non-equivalent ex-

tended perfect binary (16, 4, 211)-codes of rank 14 over F2.

Proof. From the table 2 of paper [6] we have that the number of codes of the type

C(L7, L7, π) is equal to 5 (in notation of [6], it is codes, formed by partitions Pi = Pj = 8).

These codes have the numbers 10600, 10601, 10700, 10900, and 11500, and defined by the

following permutations πi (i = 1, l . . . , 5):

(01235467), (67012354), (01234567), (06712345), (67123450)

respectively. The group Q8 is induced by the permutations [6]

(1, 2, 6)(3, 5, 7), (0, 1, 3)(2, 7, 5), (0, 1)(2, 5)(3, 4)(6, 7).
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It is easy to see that the two first codes 10600, 10601, corresponding to the permutations π1

and π2 are equivalent to each other, since they belong to the same double (Q8-Q8)-coset of

S8. We add here that all these codes have the kernel 4. �
Etzion and Vardi [7] generalized the Solovieva-Phelps construction in the following way.

Let V be a subset of En
ev where n = 2m. Let A = (A1, A2, ..., Ak) and B = (B1, B2, ..., Bk)

be two ordered sets of subsets of V . For v ∈ V , define

ΛA(v) = {i : v ∈ Ai}, ΛB(v) = {i : v ∈ Bi},

where Ai ∈ A and Bi ∈ B. We say that A and B form a perfect segmentation of order k of

the set V , if the following both sets

⋃
i∈ΛB(v)

Ai and
⋃

i∈ΛA(v)

Bi

are extended perfect codes of length n for all v ∈ V .

Proposition 2 (Etzion−V ardi [7] construction). Let n = 2m and let A and B be a perfect

segmentation of En
ev of order n. Then the set

C =
n⋃

i=1

{(a | b) : a ∈ Ai, b ∈ Bi}

is an extended perfect code of length 2n.

In [7] Etzion and Vardi proved that the construction above provides extended perfect

codes of length 16 and rank 14, which are not equivalent to any codes, obtained by Solovieva-

Phelps construction, given by proposition 1 above and also to the extended perfect codes,

obtained in [14].

§ 4. Basic properties of (16, 4, 211) codes of rank 14

Let C be an arbitrary extended binary perfect (16, 4, 211)-code of rank 14 over F2. We

consider the general properties of such code.
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Applying the appropriate permutation of coordinates, C can be presented in the form,

when the [16, 8, 2]-code C⊥, dual to C, looks as follows:

C⊥ = {u0, u1, u2, u1 + u2}, (2)

where u0 is the zero vector, u1 = (1111111100000000), and u2 = (0000000011111111). Thus

we split coordinates into two blocks of eight coordinates such that any c ∈ C consists of two

vectors c = (c1 | c2) where each vector ci satisfies to the overall parity checking:

wt(ci) ≡ 0 (mod 2), i = 1, 2

(we call it a parity rule). The group (subgroup of S16) of two elements which permutes the

blocks is identified with S2. An element g1 × g2 ∈ G8 × G8 ⊂ G16 acts on (x |y) in the

natural way:

(g1 × g2)(x |y) = (g1(x) | g2(y)).

Definition 3 Define the group:

G = S2 � (G8 × G8)

= S2 � ((S8 � H8
ev) × (S8 � H8

ev))

= (S2 � (S8 × S8)) � (H8
ev × H8

ev).

It is clear that G is a subgroup of G16. Then we have the following statement.

Lemma 1 Let C be an arbitrary extended binary perfect (16, 4, 211)-code of rank 14 over F2

with dual code (2). Suppose there exists a permutation σ ∈ S16 so that σC satisfies the parity

rule. Then σ ∈ S2 � (S8 × S8).

Proof. Since C satisfies parity rule, we have that

(x · u1) = 0, (3)

for any x ∈ C. Similarly, since σC satisfies the parity rule, we have that

(σ(x) · u1) = 0, for any x ∈ C.

8



Multiplying both vectors σ(x) and u1 by σ−1, we obtain

(x · σ−1(u1)) = 0, for any x ∈ C. (4)

Let u′ = u1 + σ−1(u1). From (3) and (4) we have that

(x · u′) = 0, for any x ∈ C.

Thus u′ ∈ C⊥ and consequently (recall that C⊥ is a vector space) σ−1(u1) ∈ C⊥. Taking

into account that σ−1(u1) is of weight 8, we obtain that σ−1(u1) is equal to either u1 or

u2. So σ(u1) = u1 or σ(u2) = u1, in other words, σ either stabilizes the blocks or permutes

them. �
Recall that E8

ev is the subspace of E8, formed by the vectors of even weight. Denote any

codeword of C by c = (a | b).

Definition 4 Let C be a (16, 4, 211) code of rank 14 over F2 with dual code (2). Denote

by A�(a) (respectively, by Ar(b)) the sets obtained by fixing vector a (respectively b) :

Ar(a) = {b : (a | b) ∈ C}, A�(b) = {a : (a | b) ∈ C}.

Lemma 2 Suppose the conditions of lemma 1 are satisfied. Let c = (a | b) be any codeword

of C. Then the set A�(b) (respectively Ar(a)) is an extended binary perfect (8, 4, 16)-code.

Proof. The fact that A�(b) (respectively, Ar(a)) has the minimal distance 4 follows from

definition of such set. The cardinality follows from counting arguments. In average, over all

b ∈ E8
ev, we have that

¯|A�| =
1

|E8
ev|

×
∑

b∈E8
ev

|A�(b)| =
|C|
|E8

ev|
= 16.

From the other side, |A�(b)| can not be more than 16 for any b ∈ E8
ev. Thus |A�(b)| = 16.

Similarly, the same equality is valid for |Ar(a)|. �

Definition 5 Define the extended ball W (x) of radius two centered at x ∈ E8
ev:

W (x) = x + W0 = {x + w : w ∈ W0}
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where W0 = {e0, e1, ..., e7} and

e0 = (00000000), e1 = (00000011),

e2 = (00000101), e3 = (00001001),

e4 = (00010001), e5 = (00100001),

e6 = (01000001), e7 = (10000001),

in this notation W0 = W (e0). Note that the stabilizer of W0 in S8 fixes the last coordinate

and is isomorphic to S7. In this paper, we identify S7 with StabS8(W0) (i.e. S7 permutes the

first seven coordinates).

Lemma 3 Suppose we are in conditions of lemma 1 and let (a1 | b1) and (a2 | b2) be any

two codewords of C. Let a1 and a2 (respectively, b1 and b2) be such that d(a1, a2) = 2

(respectively, d(b1, b2) = 2). Then the corresponding codes Ar(a1) and Ar(a2) (respectively,

A�(b1) and A�(b2)) do not intersect each other, i.e. Ar(a1) ∩ Ar(a2) = ∅ (respectively,

A�(b1) ∩ A�(b2) = ∅).

Proof. In contrary, assume that there is x such that x ∈ Ar(a1)∩Ar(a2). Then we have

d((a1 |x), (a2 |x)) = d(a1, a2) = 2,

i.e. a contradiction, since (a1 |x) and (a2 |x) are distinct codewords of C. The proof of the

second statement is similar. �

Lemma 4 Suppose we are in conditions of lemma 1 and let x ∈ E8
ev be any vector. Consider

the codes A�(xi) where xi ∈ W (x), i = 0, 1, ..., 7 and x0 = x. Then the set of codes A�(x0),

A�(x1), ...,A�(x7) is a partition of E8
ev.

Proof. Since

|W (x)| · |A�(xi)| = |E8
ev| = 27,

we have to check only that any two distinct codes A�(xi) and A�(xj) where i �= j and

i, j ∈ {0, 1, ..., 7} have empty intersection. But this follows from lemma 3, since for any

xi, xj from W (x) we have that d(xi, xj) = 2. �
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Lemma 5 Suppose we are in conditions of lemma 1 and let a and ā (respectively b and

b̄) be any pair of complementary vectors from E8
ev. Let Ar(a) and Ar(ā) (respectively A�(b)

and A�(b̄)) be the corresponding codes. Then these two codes are coincide: Ar(a) = Ar(ā)

(respectively A�(b) = A�(b̄)).

Proof. In contrary, assume that it is not the case, i.e. there is x ∈ E8
ev such that

Ar(x) �= Ar(x̄). Since Ar(x) is an extended perfect code with minimal distance 4, this

means that there are two vectors y ∈ Ar(x) and z ∈ Ar(x̄) such that d(y, z) = 2. Since

Ar(x̄) is also an extended perfect code, it contains vector z̄ such that d(y, z̄) = 6. Consider

now the following two vectors from C: (x |y) and (x̄ | z̄). We have that

d((x |y), (x̄ | z̄)) = d(x, x̄) + d(y, z̄) = 8 + 6 = 14.

But C is an extended binary perfect code too, and, therefore, for any c ∈ C there is a

complementary word c̄ ∈ C. Thus, we obtain two vectors (x̄|ȳ) and (x̄|z̄) at distance 2

from each other, i.e. a contradiction. The proof of the second statement is similar. �

Remark 1 It is easy to see that the results above, which we derived for (16, 4, 211)-codes of

rank 14 over F2, are valid for any (n, 4, 2n−m−1)-code C of arbitrary length n = 2m ≥ 16 with

rank n − 2 over F2.

§ 5. Construction of extended (16, 4, 211)-codes of rank 14

Now we describe the construction of the extended binary perfect (16, 4, 211)-codes C of

rank 14. Let C be the set of all such distinct codes C. Our purpose is to parameterize all

these codes, using the canonical partitions. We can do it using the special subsets of code

C, called headings, formed by the two partitions, connected with the two spheres W0 which

occur on the left and right hand sides (the first and the second blocks) of the codewords.

We start with the definition of heading of a code. Clearly when c = (a | b) runs over C, each
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of two vectors a and b run over the set E8
ev. In particular, when a runs over the ball W0 the

corresponding codes Ar(a) form a partition of E8
ev,

E8
ev =

⋃
a∈W0

Ar(a) =
7⋃

i=0

Ar(ei).

Similarly, when b runs over the set W0, the codes A�(b) also form a partition of E8
ev. Denote

by Ω the set of all distinct partitions L = (A0, A1, . . . , A7) of E8
ev into extended binary perfect

codes, i.e. As is a (8, 4, 16)-code Thus we have

Ω =
9⋃

i=0

OrbG8(Li).

Moreover the following result holds.

Proposition 3 (Computational result). There exist exactly 27330 different partitions of E8
ev

which can be arranged under action of G8 into ten orbits OrbG8(Li), where i = 0, . . . , 9 of

sizes

{840, 420, 5040, 5040, 5040, 30, 1680, 1920, 630, 6720}

ordered according to the indices i of OrbG8(Li).

Definition 6 Let C be a (16, 4, 211) code with rank 14 over F2. Define the following

subset F = F (C) of C (of 248 words), consisting of two partitions with 8 common words

counted twice

F (C) =
7⋃

s=0

{(es |y) : y ∈ Ar(es)}
⋃ 7⋃

s=0

{(x | es) : x ∈ Al(es)}. (5)

We say that C has a heading F and for the sake of simplicity write as:

F =

7⋃
s=0

es × Ar(es)
⋃ 7⋃

s=0

Al(es) × es.

Assume that the partition A�(e0), A�(e1), ..., A�(e7) is equivalent to Li for some i,

i = 0, 1, ..., 9 and the partition Ar(e0), Ar(e1), ..., Ar(e7) is equivalent to Lj for some

j, j = 0, 1, ..., 9. Recall that Li and Lj are among of the ten canonical (non-equivalent)
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partitions of Phelps [6]. All these partitions Lk, k = 0, 1, ..., 9 are ordered, according to the

vectors es of the ball W0:

Lk = (Lk,0, Lk,1, . . . , Lk,7) where es ∈ Lk,s for s = 0, 1, . . . , 7.

Without loss of generality we can assume that i ≤ j (if not we can consider the code C ′

obtained from C on switching the sides). Furthermore, by the corresponding shift and

permutation of coordinates we can obtain the following ordering of Li:

Li = (Li,0, Li,1, ..., Li,7), Li,s = A�(es), (6)

where the vectors es (s = 0, 1, ..., 7) are given by definition 5. In such way we arrive to the

following natural canonical heading. For a ∈ En and X ⊆ En denote:

a × X = {(a |x) : x ∈ X}, X × a = {(x |a) : x ∈ X}.

Definition 7 (Canonical (i, j, k) heading). Let 0 ≤ i ≤ j ≤ 9 and Li, Lj are two

canonical partitions. Define the set of 248 (where 8 words are counted twice) elements as

follows:

F
(k)
i,j =

7⋃
s=0

eπ−1
k (s) × Lj,s

⋃ 7⋃
s=0

Li,π−1
k (s) × es

=

7⋃
s=0

{(eπ−1
k (s)|x) : x ∈ Lj,s}

⋃ 7⋃
s=0

{(y | es) : y ∈ Li,π−1
k (s)}.

where k = 1, 2, ..., m(i, j), and

{π1, , π2, ..., πm(i,j)}

is a fixed set of the (Qj-Qi) double-coset representatives of S8.

The next statement gives all canonical headings (i, j, k) as sizes (Qj-Qi) double-cosets of

the group S8.

Proposition 4 (Computational result). There exist 1050 different canonical headings (i, j, k),

which can be arranged into the following (Qj-Qi) double-cosets of S8 with sizes m(i, j) given
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by the following table:

j \ i 0 1 2 3 4 5 6 7 8 9

0 16

1 9 14

2 20 17 39

3 32 19 51 82

4 34 16 45 80 84

5 3 6 5 5 4 4

6 7 7 11 13 12 3 5

7 3 6 5 5 4 4 3 4

8 13 12 24 30 27 4 8 4 16

9 21 13 32 50 49 4 9 4 19 34

Using canonical headings, now we can define canonical codes C.

Definition 8 (Canonical code ). Let C be any code from C. We say that C is a canonical

(i, j, k) code, denoted by C
(k)
i,j if C has a canonical heading

F (C
(k)
i,j ) = F

(k)
i,j .

Now the important question is does any code C from C equivalent to the canonical code

C
(k)
i,j ? The next statement is very important from this point of view.

Proposition 5 (Computational result) Let Li be the canonical partition and StabG8(Li) be

its stabilizer group in G8 = S8 � H8
ev. Let

G8 =

ni⋃
j=0

gjStabG8(Li), where ni = [G8 : StabG8(Li)]

be the left coset decomposition of the group G8. Then any such coset has the non-trivial

intersection with the stabilizer group StabG8(W0) of the sphere W0, i.e.

|StabG8(W0) ∩ gjStabG8(Li)| > 0.
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Using this computational result, now we can guarantee that any code from C is equivalent

to some canonical code.

Proposition 6 Let C ∈ C and let F = F (C) be a heading of C. Then C is G-equivalent

to the canonical code C
(k)
i,j ∈ C with heading F

(k)
i,j , where 0 ≤ i ≤ j ≤ 9 and where the

permutation πk is defined by (??).

Proof. Let C be any code from C. Define the following subset of C

Y2 =

7⋃
s=0

es × Ar(es) = {(es |y) : es ∈ W0, y ∈ Ar(es)}, (7)

where Ar(es), s = 0, . . . , 7 is a partition Ar of E8
ev. Assume that Ar is equivalent to Lj for

some j. Thus there exists an element g2 ∈ G8 such that g2Ar = Lj and in particular

g2Ar(es) = Lj,τ−1
2 (s). (8)

Let 18 be the identity element of the group G8. Applying the element 18×g2 to C, its subset

defined (7), and taking into account (8), we have

(18 × g2)Y2 = (18 × g2)
{ 7⋃

s=0

es × Ar(es)
}

=
7⋃

s=0

es × (g2Ar(es))

=
7⋃

s=0

es × Lj,τ−1
2 (s)

=
7⋃

s=0

eτ2(s) × Lj,s.

Set C ′ = (1 × g2)C, and define the following subset of C ′

Y1 =
7⋃

s=0

Al(es) × es = {(y | es) : es ∈ W0, y ∈ Al(es)},

where Al(es), s = 0, . . . , 7 is a partition Al of E8
ev. Assume that Al is equivalent to Li

for some i. By Proposition 5 there exists an element g1 ∈ G8 such that g1Al = Li and

g1W0 = W0. In particular

g1Al(es) = Li,τ−1
1 (s). (9)
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Applying the element g1 × 18 to C ′, its subset Y1, and taking into account (9), we have

(g1 × 18)Y1 = (g1 × 18)
{ 7⋃

s=0

Al(es) × es

}

=

7⋃
s=0

(g1Al(es)) × es

=

7⋃
s=0

Li,τ−1
1 (s) × es.

Moreover, we have

(g1 × 18)
{ 7⋃

s=0

eτ2(s) × Lj,s

}
=

7⋃
s=0

g1(eτ2(s)) × Lj,s

=
7⋃

s=0

eτ3(s) × Lj,s,

for some permutation τ3 ∈ S8. Since eτ3(s) ∈ Li,τ−1
1 (s) we conclude that τ3 = τ−1

1 . Set

C ′′ = (g1 × 18)C
′. Then C ′′ is equivalent to C and its heading by definition is equal to

7⋃
s=0

eτ−1
1 (s) × Lj,s

⋃ 7⋃
s=0

Li,τ−1
1 (s) × es.

Without loss of generality we can assume that i ≤ j (if not apply the permutation of S2

from the definition of G, i.e. switch the blocks of coordinates). �
It is clear that a code C can have several different headings. Now by lemma 4 we

know that the complementary vector ēs belongs to the code A(es) for all s = 0, ..., 7. This

gives us 248 vectors of F
(k)
i,j . Now consider how to describe the remaining part of code C.

Denote by b0, b1, ..., b7 the following vectors, which form, with their complementary vectors

b̄0, b̄1, . . . , b̄7, the unique Hamming (linear) (8, 4, 16)-code, which we denote V :

b0 = (00000000), b1 = (00001111),

b2 = (00110011), b3 = (11000011),

b4 = (01010101), b5 = (10100101),

b6 = (10011001), b7 = (01101001),
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here b0 = e0. For any vector bs, where s = 1, ..., 7 the corresponding ball W (bs) is mapped

to an ordered partition, say Ps = L(bs) where P0 = Lj and Ps = (Ps,0, Ps,1, . . . , Ps,7) so that

ek ∈ Ps,k, for k = 0, 1, . . . , 7. Observe that for any i,k and s

|Li,k ∩ W (bs)| = 1.

Thus we have the following general form of any code C from the set C.

Theorem 3 Let C be any (16, 4, 211) code with rank 14 over F2. Then

C =
7⋃

s=0

7⋃
k=0

{(a | b), (ā | b) : a ∈ Li,π−1(s) ∩ W (bk), b ∈ Ps,k}

§ 6. Canonical (16, 4, 211)-codes of rank 14

Theorem 3 gives the general form of an arbitrary code from C. As we know, any such code

by Proposition 6 is equivalent to a canonical one. Our next purpose is to find all different

canonical codes. We do it by using special functions where every function represents a

canonical code.

Fix a canonical partition Li (0 ≤ i ≤ 9) and a permutation π ∈ S8. Define the function

Λi,π: {W (b)} −→ Ω, which for each arbitrary vector b gives a partition P from Ω as:

Λi,π(W (bs)) = P ∈ Ω, (10)

where P = (P0, P1, . . . , P7) is ordered so that ek ∈ Pk, for k = 0, . . . , 7 and the value of the

function Λi,π on elements of the ball W (bs)

Λi,π(a) = Pk, where a = Li,π−1(k) ∩ W (bs). (11)

Definition 9 Fix a canonical partition Li (0 ≤ i ≤ 9) and a permutation π ∈ S8. We

say that the function Λ = Λi,π is admissible, if it satisfies:

(1) Λ(b0) = Lj.

(2) Λ(bs) = Λ(b̄s).

(3) For any pair x, y, x ∈ W (bj), y ∈ W (bk), the condition d(x, y) = 2 implies that

Λ(x) ∩ Λ(y) = ∅. (12)

17



Thus all possible admissible functions give all different canonical codes. As it turns out

it is not difficult to find all of them.

Lemma 6 (Computational results). For any i and j, where 0 ≤ i ≤ j ≤ 9 the number of

admissible functions (canonical codes) is given by the following table

j \ i 0 1 2 3 4 5 6 7 8 9

0 644

1 160 176

2 100 93 125

3 434 204 215 575

4 372 120 161 536 500

5 328 300 48 168 80 2205

6 64 43 36 61 62 48 25

7 3 6 5 5 4 4 3 4

8 216 128 101 319 180 184 62 4 123

9 180 64 81 204 220 64 33 4 115 113

The total number of distinct canonical (16, 4, 211) codes in C is equal to 10312.

Now we formulate several lemmas obtained by the direct computations, which give the

distribution of the canonical codes with given size of the kernel. Almost all codes from C
have ranks in the interval 4 ≤ ker(C) ≤ 64. We give the same tables on i and j as above for

all values of kernels. Agree that in the all tables which we give below, we omit the zero j-th

rows.

Lemma 7 (Codes with kernel 4). The number of admissible functions whose corresponding
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codes have kernel of size 4 is given by the following table:

j \ i 0 1 2 3 4 5 6 7 8 9

0 130

3 60 0 0 103

5 80 0 0 25 0 721

6 9 0 0 16 0 5 13

7 0 0 0 0 0 0 3 4

9 26 0 0 52 0 10 24 4 0 66

The total number of distinct (16, 4, 211) codes in C with kernel 4 is equal to 1351.

Lemma 8 (Codes with kernel 8). The number of admissible functions whose corresponding

codes have kernel of size 8 is given by the following table:

j \ i 0 1 2 3 4 5 6 7 8 9

0 250

1 58 0

2 14 0 0

3 159 100 63 209

4 99 0 0 219 0

5 132 90 5 65 20 690

6 25 35 34 43 56 15 7

7 0 6 5 5 4 0 0 0

8 77 0 0 133 0 55 29 0 0

9 72 59 78 122 194 21 7 0 58 32

The total number of distinct (16, 4, 211) codes in C with kernel 8 is equal to 3345.
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Lemma 9 (Codes with kernel 16). The number of admissible functions whose corresponding

codes have kernel of size 16 is given by the following table:

j \ i 0 1 2 3 4 5 6 7 8 9

0 191

1 83 138

2 54 59 60

3 156 102 150 235

4 202 103 127 301 426

5 79 153 24 59 38 617

6 29 6 1 2 6 25 4

7 3 0 0 0 0 0 0 0

8 102 78 39 139 116 92 30 4 65

9 76 5 3 27 25 29 2 0 55 11

The total number of distinct (16, 4, 211) codes in C with kernel 16 is equal to 4331.

Lemma 10 (Codes with kernel 32). The number of admissible functions whose correspond-

ing codes have kernel of size 32 is given by the following table:

j \ i 0 1 2 3 4 5 6 7 8 9

0 61

1 19 38

2 32 32 64

3 56 2 2 26

4 69 17 34 16 73

5 32 54 16 16 20 132

6 1 2 1 0 0 2 1

7 0 0 0 0 0 4 0 0

8 28 46 59 46 63 32 2 0 50

9 6 0 0 3 1 4 0 0 2 4
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The total number of distinct (16, 4, 211) codes in C with kernel 32 is equal to 1168.

Lemma 11 (Codes with kernel 64). The number of admissible functions whose correspond-

ing codes have kernel of size 64 is given by the following table:

j \ i 0 1 2 3 4 5 6 7 8 9

0 11

2 0 2 1

3 3 0 0 2

4 2 0 0 0 1

5 4 3 3 3 2 44

6 0 0 0 0 0 1 0

8 9 4 3 1 1 4 1 0 7

The total number of distinct (16, 4, 211) codes in C with kernel 64 is equal to 112.

Lemma 12 (Codes with kernels 128 and 256). The number of admissible functions whose

corresponding codes have kernel of size 128 and 256 are given by the values:

µ(0, 0) = µ(5, 0) = µ(8, 5) = µ(8, 8) = 1.

and for the kernel 256

µ(5, 5) = 1.

§ 7. Non-equivalent (16, 4, 211)-codes of rank 14

Our next goal is to identify the G-equivalent canonical codes (i.e. equivalence under

the action of the group G). It is obvious that codes whose kernels have different size are

non-equivalent.
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Lemma 13 Let C ∈ C be a code and F (C) its heading. Then for any

g ∈ StabS8×S8(W (0) × W (0)) � S7 × S7,

we have F (gC) = gF (C).

Proof. Indeed since g stabilizes the ball W (0). �
Now we can formulate the criteria of equivalence of two canonical codes. As it turns out,

the verification of this criteria consumes the major part of the computational efforts.

Theorem 4 Two canonical codes C = C
(k)
i,j and C ′ = C

(k′)
i′,j′ are equivalent if and only if

τ(C + h) = gC ′, (13)

where h ∈ E8
ev × E8

ev, g ∈ S7 × S7 and τ ∈ S7 × S7\G8.

Proof. For given C = C
(k)
i,j and C ′ = C

(k′)
i′,j′ , suppose there exists π ∈ S16 and h ∈ H16 so

that π(C + h) = C ′. Let h′ ∈ C ′, then adding it to both sides gives

π(C + h1) = C ′′, where C ′′ = C ′ + h′, and h1 = h + π−1(h′).

Note that C ′′ has zero word and satisfies the parity rule. Consequently C1 = C + h1 has

zero word and satisfies parity rule. Applying lemma 1 it follows that π ∈ S2 � (S8 × S8).

Since h′ ∈ C ′ satisfies parity rule, so does π−1(h′). Thus h satisfies the parity rule, i.e.

h ∈ E8
ev × E8

ev. The permutation π can be written as π = g−1τ , where g ∈ S7 × S7. �
Thus, in order to find all non-equivalent codes with given kernel, we have to check all

pairs of codes C and C ′ for this possible equality (13). Now we can formulate the main result

of the paper which has been obtained by overall checking of all possible pairs of codes with

given kernel.

Theorem 5 (Computational results) Among non-equivalent binary extended perfect codes of

length n = 16 with rank 14 over F2 there are exactly 1708 codes of rank 14, in particular, 844

Solovieva-Phelps codes and 864 codes, obtained by Etzion-Vardi construction and its gener-

alization. These codes are distributed over the kernel as follows. There are exactly
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– 101 codes with kernel 4;

– 448 codes with kernel 8;

– 780 codes with kernel 16;

– 321 codes with kernel 32;

– 53 codes with kernel 64;

– 4 codes with kernel 128;

– 1 code with kernel 256.

For comparison we give here also the distribution of Solovieva-Phelps codes of rank 14

over the size of kernel, obtained by Phelps in [6] (see Theorem 2).

Theorem 6 (Phelps [6]). Among non-equivalent Solovieva-Phelps codes of length n = 16

with rank 14 over F2 there are exactly 844 codes. These codes are distributed over the kernel

as follows:

– 35 codes with kernel 4;

– 172 codes with kernel 8;

– 374 codes with kernel 16;

– 210 codes with kernel 32;

– 48 codes with kernel 64;

– 4 codes with kernel 128;

– 1 code with kernel 256.
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