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Abstract

We study the extended binary perfect nonlinear Vasiliev codes of length n = 2m

and Steiner systems S(n, 4, 3) of rank n − m over F2. The generalized concatenation

(GC) construction of Vasiliev codes induces a variant of the doubling construction of

Steiner systems S(n, 4, 3) of rank n − m over F2. We prove that any Steiner system

S(n = 2m, 4, 3) of rank n − m is obtained by such doubling construction and can be

formed by the codewords of weight 4 of the corresponding Vasiliev codes. The length

16 is studied in details. We compute the full automorphism groups of all 12 non-

equivalent Vasiliev codes of length 16. There are exactly 15 non-isomorphic systems

S(16, 4, 3) with rank 12 over F2. We compute the automorphisms groups for these

Steiner systems.

§ 1. Introduction

An interesting open problems in algebraic coding theory is the classification of non-

linear binary perfect codes with Hamming parameters. An interesting class of such codes

is the Vasiliev codes [1]. According to Hergert [2] there are 19 non-equivalent Vasiliev’s

codes of length 15 (including the linear code), and according to Malugin [3] there are 13

non-equivalent extended Vasiliev’s codes of length 16 (including the linear code). Another

1The paper has been written under the partial financial support of the Russian fund for the fundamental

research (the number of project 03 - 01 - 00098)
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interesting question related to these codes is their group of automorphisms, which are not

known even for the length n = 16. In [4] there are some upper and lower bounds for orders

of the groups of symmetries of Vasiliev codes of any length n = 2m. In [3] the orders of

automorphism groups of all 18 non-equivalent Vasiliev codes of length 15 are found.

Another interesting open problem in combinatorial design theory is the classification of

all non-isomorphic Steiner systems S(16, 4, 3). In the previous papers [5, 6] we enumerated

all systems with rank at most thirteen over the field F2. In particular, it has been proved

that there are 15 non-isomorphic such systems with rank 12 and 4131 such non-isomorphic

systems with rank 13.

The purpose of this paper is to find the full automorphism group for the 12 non-

equivalent Vasiliev codes of length 16 and the corresponding 15 non-isomorphic Steiner

systems S(16, 4, 3), which are formed of codewords of weight four of Vasiliev codes of length

16. These systems are exactly the non-isomorphic systems of rank 12 over F2. For each

Vasiliev code we give all Steiner systems S(16, 4, 3) which belongs to this code. We also

study the Steiner systems S(n = 2m, 4, 3) of rank n − m over F2, connected with Vasiliev

codes of length n. We describe a variant of the doubling construction of Steiner system

S(v, 4, 3) with fixed rank over F2. For the case v = 2m this construction provides all non-

isomorphic Steiner systems S(v, 4, 3) with rank v − m over F2. Any such system belongs to

some Vasiliev code of length v.

The paper is organized as follows. Preliminary results and terminology are given in § 2.

In § 3 we describe the GC-construction of Vasiliev codes. The full automorphism groups of

all Vasiliev codes of length 16 are given in § 4. In § 5 we give the doubling construction of

Steiner systems S(v, 4, 3) with the given rank over F2. In the case v = 2m, this gives all non-

isomorphic Steiner systems S(v, 4, 3) of rank v − m. In § 6 we describe the automorphism

groups of all 15 non-isomorphic Steiner systems S(16, 4, 3) with rank 12 over F2. Vasiliev

codes of length 16 and corresponding Steiner systems S(16, 4, 3) obtained from codewords

of weight four are considered in § 7.

§ 2. Preliminary results and terminology
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We repeat briefly some results of [5] (see for details [5]). Let Jn = {1, 2, ..., n} and let

Sn be the full group of permutations of n elements. For any i ∈ Jn and π ∈ Sn, define the

image of i under the action of π by π(i).

Let Ea = {0, 1, 2, 3}. Define the action of S4 on E4
a as the permutations of coordinates

of E4
a. For any τ, π ∈ S4, we have (τπ)(a) = τ(π(a)).

Set H4 = S4
4 = S4 × S4 × S4 × S4. Define the action of H4 on E4

a component-wise, i.e.

for any a = (a1, a2, a3, a4) ∈ E4
a and h = (π1, π2, π3, π4) ∈ H4, we have

h (a) = (π1(a1), π2(a2), π3(a3), π4(a4)).

Let G4 = <S4, H4 > be the group generated by H4 and S4. Then G4 = S4�H4 = H4�S4

is the semi-direct product of S4 and H4. Define the action of the group G4 on E4
a. For any

g = τh ∈ G4, and ∀ a = (a1, a2, a3, a4) ∈ E4
a, we have

g(a) = τ (h (a)) = τ ((π1(a1), π2(a2), π3(a3), π4(a4)))

= (πτ−1(1)(aτ−1(1)), πτ−1(2)(aτ−1(2)), πτ−1(3)(aτ−1(3)), πτ−1(4)(aτ−1(4))).

For any subset X ⊆ E4
a and element g ∈ G4, set g X = {g (x) : x ∈ X}.

Let E = {0, 1}. Define the action of Sn on En as the permutations of coordinates, i.e.

for any y = (y1, y2, ..., yn) ∈ En and π ∈ Sn, we have

π (y) = (yπ−1(1), yπ−1(2), ..., yπ−1(n)).

Observe that for any y1,y2 ∈ En and π ∈ Sn

π(y1 + y2) = π(y1) + π(y2),

where + denotes the component-wise addition modulo 2.

Define the action of En on itself by shifts, i.e. for any y ∈ En and h ∈ En, set h(y) =

h + y. We denote this group of actions by Hn.

For n = 16 let G = <S16, H16 > be the group generated by H16 and S16. Then G = S16 �

H16 is the semi-direct product of S16 and H16. Arrange 16 coordinates into four blocks of four

coordinates. Any y ∈ E16 can be written as (y1|y2|y3|y4), where yi = (yi,1, yi,2, yi,3, yi,4) ∈
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E4, i = 1, 2, 3, 4, and yi is called the i-th block. Thus the first four coordinates belong to the

first block, the second four coordinates belong to the second block, etc. We say that block

is even/odd if its Hamming weight is even/odd. We say also that y ∈ E16 is even/odd, if its

blocks yi, i = 1, 2, 3, 4, are even/odd.

Define the action of the group G4 on E16. For any g = τh ∈ G4, and any y =

(y1|y2|y3|y4) ∈ E16, set:

g(y) = τ (h (y)) = τ (π1(y1)|π2(y2)|π3(y3)|π4(y4))

= (πτ−1(1)(yτ−1(1))|πτ−1(2)(yτ−1(2))|πτ−1(3)(yτ−1(3))|πτ−1(4)(yτ−1(4))),

where (for i = 1, 2, 3, 4):

πi (yi) = πi (yi,1, yi,2, yi,3, yi,4) = (yi,π−1
i (1), yi,π−1

i (2), yi,π−1
i (3), yi,π−1

i (4)).

Note that G4 is a subgroup of S16, and the index of G4 in S16 is equal to |S16|/|G4| =

16!/(4!)5 = 2627625. We will parameterize these cosets in the following way.

Proposition 1 [7]. Any coset of G4 in S16 has a representative π ∈ S16, such that

π(i + 1) < π(i + 2) < π(i + 3) < π(i + 4), i = 0, 4, 8, 12,

1 = π(1) < π(5) < π(9) < π(13).

We will also use another representation of the elements of S16. Given π ∈ S16, write it as

the sequence (π(1), π(2), ..., π(16)). Then replace the indices of coordinates by the indices of

their corresponding blocks. Recall that a coordinate whose index is 1, 2, 3, 4 belong to the

1-st block, i.e. in all positions j for which π(j) ∈ {1, 2, 3, 4}, we replace π(j) by the element

1. The next four indices 5, 6, 7, 8 belong to the 2-nd block, and so on. Thus we write π as

the sequence of block indices (j1, j2, ..., j16), where

{j1, j2, ..., j16} = {1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4}.

Definition 1 . For binary vector y let wt(y) denote its Hamming weight. Let

x = (x1|x2|x3|x4) ∈ E16
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where xi = (xi,1, xi,2, xi,3, xi,4) for i = 1, 2, 3, 4. We say that x satisfies the parity rule, if

wt(xi) ≡ j (mod 2), i = 1, 2, 3, 4, where j ∈ {0, 1}. (1)

Proposition 2 [6, 7]. Suppose that C = {(1000), (0100), (0010), (0001)}, where 0 =

0000, 1 = 1111. Suppose there exists a permutation σ ∈ S16 such, that σ C satisfies the

parity rule (1). Then σ written as a sequence of block indices belongs to G4 or a G4-coset

which has a representative of one of the following form:

σ1 = (1, 2, 3, 4 | 1, 2, 3, 4 | 1, 2, 3, 4 | 1, 2, 3, 4),

σ2 = (1, 2, 3, 4 | 1, 2, 3, 4 | 1, 1, 2, 2 | 3, 3, 4, 4),

σ3 = (1, 1, 2, 2 | 1, 1, 2, 2 | 3, 3, 4, 4 | 3, 3, 4, 4),

σ4 = (1, 1, 2, 2 | 1, 1, 3, 3 | 2, 2, 4, 4 | 3, 3, 4, 4),

σ5 = (1, 1, 2, 2 | 1, 1, 2, 2 | 3, 3, 3, 3 | 4, 4, 4, 4),

σ6 = (1, 1, 2, 2 | 1, 1, 3, 3 | 2, 2, 3, 3 | 4, 4, 4, 4).

Proposition 3 . The sets of σi-type G4-cosets of Proposition 2 are contained in the (G4-

G4)-double cosets G4σiG4, i = 1, 2, . . . , 6 where σi ∈ S16 the fixed set of representatives

σ1 = (1, 5, 9, 13 | 2, 6, 10, 14 | 3, 7, 11, 15 | 4, 8, 12, 16),

σ2 = (1, 5, 9, 13 | 2, 6, 10, 14 | 3, 4, 7, 8 | 11, 12, 15, 16),

σ3 = (1, 2, 5, 6 | 3, 4, 7, 8 | 9, 10, 13, 14 | 11, 12, 15, 16),

σ4 = (1, 2, 5, 6 | 3, 4, 9, 10 | 7, 8, 13, 14 | 11, 12, 15, 16),

σ5 = (1, 2, 5, 6 | 3, 4, 7, 8 | 9, 10, 11, 12 | 13, 14, 15, 16),

σ6 = (1, 2, 5, 6 | 3, 4, 9, 10 | 7, 8, 11, 12 | 13, 14, 15, 16).

Proof. Follows from Proposition 1 and from the fact that permutations from G4 do not

change the parity, i.e. if X is a subset of E16 which satisfies the parity rule and for some

σ ∈ S16 the set σX also satisfies the parity rule, then the parity of gσX is satisfied for any

g ∈ G4. Moreover, the σi-type cosets of G4 are contained in the double cosets G4σiG4, where

σi, i = 1, 2, . . . , 6 is the fixed set of σi-type permutations. �
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Definition 2 . For any σ ∈ S16, define its normalizer in G4:

N(σ) = {g ∈ G4 : σ−1gσ ∈ G4}.

Let E be a finite alphabet of size q : E = {0, 1, ..., q − 1}. A q-ary code of length n is an

arbitrary subset of En. Denote such q-ary code C of length n, with the minimal distance d

and cardinality N as (n, d, N)q-code. Denote by wt(x) the Hamming weight of the vector x

over E. For a binary (i.e. q = 2) code C denote by 〈C〉 the linear envelope of words of C

over F2. The dimension of space 〈C〉 is called the rank of C and is denoted rank(C). For a

binary code C with zero vector call a kernel and denote Ker(C) the set of all vector x from

C stabilizing this code: C + x = {c + x : c ∈ C} = C. It is clear, that Ker(C) is a linear

space. For q = 2 let En
ev be the subset of En, containing all vectors of even weight. We need

also constant weight codes. Denote a q-ary constant weight code W of length n, with weight

of all codewords w, with minimal distance d and cardinality N by (n, w, d, N)q-code. For

q = 2 we denote such code W by (n, w, d, N)-code.

For vector v = (v1, ..., vn) over E denote by supp(v) its support, i.e. the set of indices

with nonzero positions: supp(v) = {i : vi �= 0}.

§ 3. Vasiliev codes

We recall the GC-construction [8, 9] of binary perfect nonlinear codes, based on the

following mapping from E2 onto E2:

ϕ(0, 0) = (00), ϕ(0, 1) = (11), ϕ(1, 0) = (10), ϕ(1, 1) = (01).

Let we have the extended binary Hamming code Ht of length t = 2m−1. Using the GC-

construction [9], the code Hn, n = 2t can be obtained as follows. Let x ∈ Ht and e ∈ Et
ev be

two arbitrary vectors. Using x = (x1, ..., xt) and e = (e1, ..., et) define the following vector

c = c(x, e) of length n:

c = (ϕ(x1, e1)|ϕ(x2, e2)|...|ϕ(xt, et)). (2)
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It is easy to see [9] that the set

{c(x, e) : x ∈ Ht, e ∈ Et
ev}

is the code Hn. It is easy now to define the class of all Vasiliev codes. The code Hn can be

presented as the following partition:

Hn = ∪x∈Ht Hn(x), (3)

where Hn(x) is the following set:

Hn(x) = ∪e∈Et
ev

{c(x, e)}. (4)

Definition 3 . Let w be a binary vector of length n = 2 t, divided into blocks of length

2:

w = (w1 |w2 | ... |wt), wi = (wi,1,wi,2) ∈ E2.

Say that w is 2-even (respectively, 2-odd), if each block wi, i = 1, 2, ..., t has an even (re-

spectively, odd) weight.

Now we construct the Vasiliev codes.

Proposition 4 [9]. Let n = 2 t = 2m and let Ht be the Hamming code of length t. Let the

code Hn is partitioned into subcodes Hn(x) according to (3) and (4). For any x ∈ Ht choose

an arbitrary 2-even vector w (x) of length n. Then the set

∪x∈Ht(Hn(x) + w (x)), (5)

is an extended binary perfect Vasiliev (n, 4, 2n−m−1)-code C.

As we know from [3], there are 12 non-equivalent extended Vasiliev codes of length 16,

i.e. extended binary perfect (16, 4, 211)-codes with rank exactly 12 over F2. In [7] we gave

another GC-construction of all (16, 4, 211)-codes of rank less or equal 13, based on mapping

two quaternary MDS (4, 2, 64)4-codes A and A′ into binary [9, 10].
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It is known (see [7], references) that there are 5 non-equivalent MDS codes Ai : (4, 2, 64)4

over Ea. In [7] they are given in the so called canonical forms. These canonical MDS codes

Ai define uniquely the canonical half-codes Ci = C(Ai) with parameters (16, 4, 1024). All

the codes C : (16, 4, 2048), constructed by this way, can be parameterized by three natural

numbers i, j, k. The code (i, j, k), where 1 ≤ i ≤ j ≤ 5 and l = 1, 2, ..., m2(i, j) is the code

C
(k)
ij ,

C
(k)
ij = (Ci + s, d

(k)
ij Cj),

where: s = (1000|1000|1000|1000) is the fixed vector, m2(i, j) is the number of (G4 � H)-

orbits, and d
(k)
ij is the specially chosen element (double coset representative) of G4 = S4 �

(S4)
4 (see [7] for details). In [7] we give the numbers m2(i, j) of (G4 �H)-orbits in the union

of some double cosets of the group G4 and the corresponding double cosets representatives

d
(k)
ij . This gives us an explicit construction of all codes C

(k)
ij or codes (i, j, k) for 1 ≤ i ≤ j ≤ 5

and l ∈ {1, 2, ..., m2(i, j)}.
The next statement gives us 12 non-equivalent extended Vasiliev codes (i, j, k).

Proposition 5 [7] The 12 non-equivalent extended Vasiliev codes of length 16 are the fol-

lowing (i, j, k)-codes (Ci + s, dk
ij Cj), dk

ij ∈ G4:

(1, 1, 2), (1, 1, 4), (1, 2, 1), (1, 2, 2), (1, 2, 5), (1, 5, 1),

(2, 2, 1), (2, 2, 2), (2, 2, 5), (2, 3, 40), (3, 3, 3), (3, 3, 9).

§ 4. Automorphism groups of Vasiliev codes

Let C be any Vasiliev code and let Ker (C) be its kernel, i.e. Ker(C) = {h ∈ C : C +h =

C}. Then there exist a set of [C : Ker(C)] vectors {hi} (denoted by C/Ker(C)) in C so that

C is the disjoint union of cosets of Ker(C)

C =
⋃
i

(hi + Ker(C)).

Definition 4 . For any Vasiliev code C and h ∈ H16 let

P (h) = StabG4(C + h).

In particular set P = StabG4(C) and Pi = P (hi) = StabG4(C + hi).
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Note that if h′ ∈ Ker(C) then P (h + h′) = P (h).

Lemma 1 . Let C be the Vasiliev code and

(τ,h) = τh ∈ StabG(C) ⊂ G = S16 � H16.

Let τ ′ ∈ PτP (h) and h′ ∈ Ker(C) + h. Then (τ ′,h′) ∈ StabG(C).

Proof. Indeed suppose τ ′ = g1τg2, where g1 ∈ P , g2 ∈ P (h) and h′ = h1 + h, where

h1 ∈ Ker(C). We have that

(g1τg2,h1 + h)C = g1τg2(C + h1 + h) = g1τ(C + h) = g1C = C.

�

Lemma 2 . Let C be the Vasiliev code and τh ∈ StabG(C). Then τ = g ∈ G4 or τ =

x−1σ3g ∈ G4σ3G4, where x ∈ N(σ3)\G4/P is the (N(σ3)-P -double coset representative and

g belongs to the P (h)-coset of G4, uniquely determined by x.

Proof. Indeed, suppose τh ∈ StabG(C), i.e. τ(C + h) = C. Since τ−1(C) contains the

zero codeword, vector h belongs to C. Therefore C +h satisfies the parity law, and τ(C +h)

satisfies the parity law as well. By Proposition 2 the permutation τ belongs to G4 or the

σi-type coset of G4, i = 1, 2, ..., 6 and by Proposition 3 we have that τ ∈ G4σiG4 or τ ∈ G4.

Direct calculations show that τ ∈ G4 or τ ∈ G4σ3G4. Thus, if τ = g ∈ G4 then

C = g(C + h). (6)

Next, suppose τ = x−1σ3g, where x−1, g ∈ G4. Note that since G4 is a group then x ∈ G4.

Then equality x−1σ3g(C + h) = C is equivalent to

σ3xC = g(C + h). (7)

Suppose that a pair x and g satisfies this equation. Let x′ = x1xg1, where x1 ∈ N(σ3) and

g1 ∈ StabG4(C). Let x2 = σ3x1σ3. Multiplying both sides of (7) by x2, we obtain

x2σ3xg1C = x2g(C + h),

9



which is equivalent (since x2σ3 = σ3x1 and g1C = C) to

σ3x
′C = g′(C + h),

where g′ = x2g. It follows that x ∈ N(σ3)\G4/P and g belongs to the P (h)-coset of G4. To

show that the P (h)-coset of g is uniquely determined by x suppose the opposite:⎧⎨
⎩ σ3xC = g(C + h)

σ3xC = g′(C + h).

Thus g(C + h) = g′(C + h), which implies g−1g′ ∈ P (h) i.e. g, g′ belong to the same

P (h)-coset of G4 which leads to a contradiction. �
We need the following technical lemma:

Lemma 3 For any g,x1,x2 ∈ G4 the equality

x1σ3 = x2σ3g

implies that x−1
2 x1 ∈ N(σ3).

Proof. Indeed, since σ2
3 = 1, from x1σ3 = x2σ3g it follows that σ3x

−1
2 x1σ3 = g. Thus

σ3x
−1
2 x1σ3 ∈ G4, i.e. x−1

2 x1 ∈ N(σ3). �

Lemma 4 Let C be a Vasiliev code and StabG4�H16(C) = StabG4�H16(C) be its stabilizer

group in G4 � H16. Let P = StabG4(C) and Pi = P (hi). Then

StabG4�H16(C) =
⋃
i

Pgi � (hi + Ker(C)),

where {hi} is the subset of the set C/Ker(C) representatives and gi ∈ G4/Pi is uniquely

determined by hi. The disjoint union is taken over all i’s so that hi, gi satisfy equation (6).

Proof. Suppose (g,h) = gh ∈ G4 �H16 is in the stabilizer group of C, i.e. g(C +h) = C

(it is clear that for some h ∈ C/Ker(C) the equation g(C + h) = C over g has no solution).

Then for any p ∈ P and h′ ∈ Ker(C) the element (pg,h + h′) ∈ G4 � H16 is also in the

stabilizer group of C (since pC = C and h′ + C = C). To show that the P -coset of g is
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uniquely determined by h, suppose that h ∈ C/Ker(C) and gi, gj belong to the different

P -cosets of G4, i.e. gjg
−1
i �∈ P . Then⎧⎨

⎩ C = gi(C + h)

C = gj(C + h)

Thus g−1
i C = g−1

j C, which implies gjg
−1
i ∈ P i.e. gi, gj belong to the same P -coset of G4

which leads to a contradiction. �

Lemma 5 . Let C be a Vasiliev code and Stab(C) = StabG(C) (G = S16 � H16) be its

stabilizer group. Then

Stab(C) = StabG4�H16(C) ∪
⋃
i

⋃
j

Px−1
ij σ3gijPi � (hi + Ker(C)),

where hi’s is the subset of C/Ker(C) representatives; xij ∈ N(σ3)\G4/StabG4(C) and gij ∈
G4/Pi is uniquely determined by xij. The disjoint union is taken over all i’s and j’s so that

hi,xij, gij satisfy equation (7).

Proof. The double coset decomposition follows directly from Lemmas 1 and 2. To show

that the union is disjoint, note that τh = τ ′h′ if and only if τ = τ ′ and h = h′. Thus the

union is disjoint for different hi’s. �

Lemma 6 . Let C be a Vasiliev code and Stab(C) = StabG(C) be its stabilizer group and

|Stab(C)| the number of elements. Following the notations of Lemma 5, we have

|Stab(C)| = |StabG4�H16(C)| + |Ker(C)| · |P | ×
(∑

i

∑
j

|Pi|
|y−1

ij Pyij ∩ Pi|

)
,

where yij = x−1
ij σ3gij.

Proof. For any (P -Pi)-double coset we have PyijPi = PyijPiy
−1
ij · yij so that

PyijPi =
⋃
k

Pyijzijk, where zijk ∈ y−1
ij Pyij ∩ Pi\Pi.
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Thus the number of P -cosets in PyijPi is equal to

|Pi|
|y−1

ij Pyij ∩ Pi|
.

Multiplying it by the number of elements of P -coset and by the number of elements of the

group Ker(C), we obtain the formula. �
Summarizing Lemmas 5 and 6, we have

Corollary 1 Let C be a Vasiliev code. Then

Stab(C) = StabG4�H16(C) ∪
⋃
i

⋃
j

⋃
k

(Pyijzijk,hi + Ker(C)),

where yij = x−1
ij σ3gij and zijk ∈ y−1

ij Pyij ∩ Pi\Pi.

Thus, we arrive to the following one of the main results of the paper.

Theorem 1 The orders of the stabilizer groups Stab(i, j, k) of all extended Vasiliev (i, j, k)-

codes C of length 16 are given in the following table (here m(i, j, k) is the number of the

(P − Ker (C))-double cosets):

code (i, j, k) StabG4 Ker(i, j, k) m(i, j, k) |Stab(i, j, k)|
(1, 1, 2) 768 512 4 3 × 219

(1, 1, 4) 1024 512 12 3 × 221

(1, 2, 1) 384 128 56 7 × 3 × 217

(1, 2, 2) 96 128 8 3 × 215

(1, 2, 5) 128 128 16 218

(1, 5, 1) 768 256 16 3 × 220

(2, 2, 1) 384 256 4 3 × 217

(2, 2, 2) 96 128 2 3 × 213

(2, 2, 5) 128 128 4 216

(2, 3, 40) 128 128 1 214

(3, 3, 3) 128 128 48 3 × 218

(3, 3, 9) 128 128 96 3 × 219
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Now we are going to consider the structure of G16-orbit of Vasiliev codes. In [7] we showed

that all Vasiliev codes (16, 4, 2048)-codes C satisfy, the parity rule (see (1)). Following [7],

denote by C the set of all such (16, 4, 2048)-codes, satisfying the parity rule, (with or without

the zero word) and by C0 those with the zero word. Of course if a code C ∈ C does not have

a zero word then C + x ∈ C0 (x ∈ C) does.

Definition 5 For any subgroup G of G16 and any C ∈ C the G-orbit of C in C is the

subset of C:

OrbG(C) = {g C : g ∈ G, g C ∈ C}.

Since G is a group, if C ′ ∈ OrbG(C) then

OrbG(C ′) = OrbG(C).

Since any code C without zero can be shifted to zero, it implies that any G16-orbit of C
has representatives from C0. Set

Orb(C) = OrbG16(C) ∩ C0.

The following lemma examines the structure of orbits in details

Lemma 7 Let C be a Vasiliev code with zero word, i.e. C ∈ C0 and let P (h) = StabG4(C +

h). Then

Orb(C) =
⋃
h

⋃
x

⋃
g

xσ3g(C + h),

where h ∈ C/Ker(C), x ∈ G4/N(σ3) and g ∈ G4/P (h) is the disjoint union.

Proof. Indeed, suppose C ′ = τ(C + h) ∈ Orb(C), where τ ∈ S16 and h ∈ H16. Since

C ′ has zero word, it follows that h ∈ C, and in particular h ∈ C/Ker(C). By Proposition 3

τ ∈ G4σiG4, where i = 1, . . . , 6. Direct calculations for Vasiliev codes show that only i = 3

occurs. Thus we can assume that τ = xσ3g, where x, g ∈ G4. Furthermore

G4σ3G4 =
⋃

x∈G4/N(σ3)

xσ3G4.

Obviously g is defined up to the multiple of P (h) on the right. The proof of Lemma 4 shows

that different triples (x, g,h) define different codes. �
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§ 5. Steiner systems S(v, 4, 3) with given rank

A Steiner system S(v, k, t) is a pair (X, B) where X is a v-set and B is a collection of

k-subsets of X such that every t-subset of X is contained in exactly one member of B. A

system S(v, 3, 2) is called a Steiner triple system (briefly STS(v)) and a system S(v, 4, 3) is

called a Steiner quadruple system (briefly SQS(v)). The necessary condition for existence of

an SQS(v) is that v ≡ 2 or 4 (mod 6).

A binary incidence matrix of a Steiner system S(v, 4, 3) is the binary constant weight

code, denoted by C(v, 4, 4, v(v−1)(v−2)/24) which is strongly optimal [15]. In our notation

the connection between the system (X, B) and the code C looks as follows:

B = {supp(v) ⊂ X : v ∈ C}.

More generally, the following result is valid [15]: the existence of a Steiner system S(v, k, t) is

equivalent to the existence of a constant weight code C(v, k, 2 (k− t+1), N) where N =
(v

t)
(k

t)
.

In this paper we will mainly use the presentation of S(v, k, t) as the binary constant weight

code and denote by C).

Let S = S(v, 4, 3) be a Steiner system and let C(v, 4, 4, v(v − 1(v − 2)/24), be the

corresponding constant weight code (the incidence matrix of S). Denote by rank(S) =

rank(C) the dimension of the linear envelope of words of C over F2.

In the previous paper [6] we classified all Steiner systems S(16, 4, 3) of rank less or equal

13 over F2. In particular, we found 15 non-isomorphic such systems with rank exactly 12

(in [6] we give the explicit construction of all these systems). Any Steiner system S(16, 4, 3)

with rank less or equal to 13 can be constructed by GC-construction, based on mapping

of two quaternary codes into binary ones. One of the codes is an MDS (4, 2, 64)4-code A

and the other code is a constant weight (4, 2, 2, 18)-code W . There are five non-equivalent

MDS codes Ai, i = 1, 2, 3, 4, 5 [7], and eleven non-equivalent constant weight codes Wj ,

j = 1, 2, ..., 11 [6]. The code Ai defines uniquely the odd (16, 4, 4, 64)-code Ci = C(Ai) and

the code Wj defines uniquely the even (16, 4, 4, 76)-code Vj = V (Wj). The resulting constant

weight (16, 4, 4, 140)-code C is the following union:

C = Ci ∪ Ci, d
(k)
ij Vj , k = 1, 2, ..., m3(i, j),
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where d
(k)
ij is the fixed representative in the (Pi− Qj)-double coset decomposition of G4, Pi =

StabG4(Ci) and Qj = StabG4(Wj) and m3(i, j) is the number of (Pi − Qj)-double cosets of

G4. We refer to such Steiner system as (i, j, k).

The next statement gives us all 15 non-isomorphic Steiner systems (i, j, k) with rank 12

(see [6] for construction).

Proposition 6 [6] The 15 non-isomorphic Steiner systems S(16, 4, 3) with rank 12 over F2

are the following systems (i, j, k):

(1, 1, 2), (1, 1, 4), (1, 2, 1), (1, 2, 2), (1, 2, 5),

(1, 2, 14), (1, 2, 15), (1, 6, 1), (1, 6, 2), (1, 6, 5),

(2, 1, 5), (2, 2, 2), (2, 2, 15), (3, 2, 158), (3, 2, 162).

It is well known that an SQS(2m) system S, formed by the points and planes of the affine

geometry AG(m, 2) (of dimension m over F2) has the minimal possible rank: rank(S) =

2m − 1 − m. Denote by Lm the system S(2m, 4, 3) formed by the points and planes of

AG(m, 2). We describe now the variant of the classical doubling construction A (SQS(v) −→
SQS(2v) which gives, in particular, all SQS(2m) with rank equal to 2m−m. This construction

comes from GC-construction of extended (binary perfect nonlinear ) Vasiliev (n, 4, 2n−m−1)-

codes, which we described in § 3. It is known [11] that any code C with such parameters

with rank(C) over F2 equal rank(C) = 2m − m is a Vasiliev code. From the other hand,

it is well known that for any such (extended binary) perfect code C with zero codeword

codewords of weight four form a Steiner system S(n, 4, 3). Thus the construction which

gives all non-equivalent Vasiliev codes with such rank induces the construction of Steiner

systems SQS(2m) with rank 2m − m. Furthermore it occurs that by this construction we

obtain all non-isomorphic Steiner systems SQS(2m) with rank 2m − m.

It is convenient to explain this construction in terms of corresponding constant weight

codes (i.e. in terms of incidence matrices). Let we have the SQS(v) system Sv given by the

pair (X, B),

X = {1, 2, ..., v}, B = {b1, ..., bM}, M = v (v − 1)(v − 2)/24),
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which we present by constant weight (v, 4, 4, M)-code denoted by Cv,

Cv = {c1, ..., cM}, ci = (ci,1, ..., ci,v)

where supp (ci) = bi for i = 1, ..., M . We double each position of Cv by doubling the set X:

to each element i ∈ X we associate the pair of elements (i1, i2). To each codeword ci ∈ C

we associate the eight following vectors V (ci) of length 2 v. For example, for the case when

ci = (1, 1, 1, 1, 0, 0, ..., 0) the set of eight vectors from V (ci) look as follows:

V (ci) = {(1, 0, 1, 0, 1, 0, 1, 0, 0, 0, ..., 0), (0, 1, 0, 1, 0, 1, 0, 1, 0, 0, ..., 0),

(1, 0, 1, 0, 0, 1, 0, 1, 0, 0, ..., 0), (0, 1, 0, 1, 1, 0, 1, 0, 0, 0, ..., 0),

(1, 0, 0, 1, 1, 0, 0, 1, 0, 0, ..., 0), (0, 1, 0, 1, 1, 0, 1, 0, 0, 0, ..., 0),

(1, 0, 1, 0, 0, 1, 0, 1, 0, 0, ..., 0), (0, 1, 0, 1, 1, 0, 1, 0, 0, 0, ..., 0)}.

(8)

Thus, nonzero positions of V (ci) are exactly four first pairs of positions of a new code of

length 2 v. Now choose for any ci the arbitrary 2-even vector h(ci) such that supp (h(ci)) ⊆
supp (V (ci). For the case of ci, which we consider, we can take, for example, any one from

16 vectors, having either (0, 0) or (1, 1) on the first four pair positions and (0, 0) at the all

remaining v − 4 pairs of positions. Finally, we define the set V of 2-even vectors, which

consists of all 2-even vectors of weight four and length 2 v. This gives
(

v
2

)
= v (v − 1)/2

vectors. Finally define the resulting constant weight code C2 v:

C2 v = V ∪ {∪v
i=1{V (ci) + h(ci)}};

here V (ci) + h(ci) = {c + h(ci) : c ∈ V (ci)}. By construction C2 v is a constant weight

code where all codewords c have the weight four: wt(c) = 4 (indeed, adding of vector h(ci)

does not change the weight: (1, 0) + (1, 1) = (0, 1) and (0, 1) + (1, 1) = (1, 0). The number

of codewords of C2 v is equal to

|C2 v| = 8 × v (v − 1)(v − 2)

24
+

(
v

2

)
=

2 v (2 v − 1)(2 v − 2)

24
,

i.e. how it should be for a Steiner system S(2 v, 4, 3). Now we have to check that the

resulting constant weight code C2 v has the minimal distance d(C2 v) = 4. Consider two
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arbitrary codewords of C2 v, say, c and c′. Assume, first, that c ∈ V (ci) and c′ ∈ V (cj).

For the case i �= j it follows from the fact, that d(ci, cj) ≥ 4 (indeed, Cv has the minimal

distance d(Cv) = 4). For the case i = j it follows from the construction (all 8 words of

V (ci) have the minimal distance 4). Now consider the case c ∈ V (ci) and c′ ∈ V . Since c′

is 2-even of weight 4 and c contains exactly four 2-odd blocks, in the worst case supports

of c and c′ have two elements in common: |supp (c) ∩ supp (c′)| = 2, which implies that

d(c, c′) = 4. Finally, for the case, c, c′ ∈ V it follows from definition of 2-even vectors: two

distinct 2-even vectors of same weight have the distance d ≥ 4. Thus the resulting code is a

constant weight (2 v, 4, 4, 2 v(2 v − 1)(2 v − 2)/24)-code C2 v, which correspond to a Steiner

system S(2 v, 4, 3).

What is a rank of this system? If the original system Sv = S(v, 4, 3) for the case v = 2m

is the system Lv (points and planes of the affine geometry AG(m, 2)), then the rank(Lv) =

v − 1−m. In this case we have for the resulting system S2 v = S(2 v, 4, 3) that rank(S2 v) ≤
2 v − m − 1 for any choice of vectors h(c) : c ∈ Cv. More exactly, if all vectors h(c) are

the zero vector, then the resulting system S2 v is the system L2 v and, hence has rank(L2 v) =

2 v − m − 2. In all other cases, i.e. when there are nonzero vectors h(c), the rank is equal

to rank(S ′) = 2 v − m − 1. This follows from two following known results.

1) By construction the set of codewords of the code C2 v is a subset of the extended Vasiliev

(2 v, 4, 22v−m−2)-code, obtained by GC-construction [9], described in § 3.

2) The extended binary perfect nonlinear (2 v, 4, 22v−m−2)-code has the rank 2 v −m − 1) if

and only if it is a nonlinear extended Vasiliev code of length 2 v = 2m+1 [11].

Now assume that v is arbitrary and that the original system S(v, 4, 3) has a rank r. We

want to show that under construction above the resulting system S ′ = S(2 v, 4, 3) has the

rank rank(S ′) ≤ r + v − 1. To see it, we first note that the set of vectors V has the rank

v−1 over F2. This is clear, since all vectors of weight 2 generate the space of all even vectors

Ev
ev which has the rank v − 1. Now consider the contribution of all vectors from the set

V ∗ = ∪c∈CvV (c). By construction of sets V (c), it is clear that

rank (V ∗) ≥ rank (Cv). (9)
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Without loss of generality we can assume that c1, ..., cr are linearly independent over F2

vectors from Cv. Now consider the rank of the union V ∪ V (ci) for some i ∈ {1, ..., r}. We

claim that rank (V ∪ V (ci)) = v for any i ∈ {1, ..., r}. The fact that rank (V ∪ V (ci)) ≥ v

is quite evident. Indeed, V consists of only 2-even vectors, and each vector from V (ci) has

exactly four 2-odd blocks. Now consider eight vectors from V (ci). As we can see from the

example of V (ci) given in (8) above, for any two vectors c and c′ from V (ci) we have that

c + c′ is a 2-even vector. Adding of any 2-even vector h (ci) to all vectors from V (ci) does

not change this property, since any 2-even vector is a linear combination of vectors from V .

We conclude, therefore, that rank (V ∪ V (ci)) ≤ v. This implies that rank (V ∪ V (ci)) = v.

Now it is clear that r linearly independent vectors c1, ..., cr from Cv induce r linearly

independent vectors, say c′1 ∈ V (c1), ..., c′r ∈ V (cr). As we have proved above, from any

set V (ci), i = 1, ..., r only one vector contribute to the rank of C2 v. We conclude, therefore,

that rank (C2 v) = v − 1 + r.

Thus, we have proved the following result.

Theorem 2 . For any Steiner system Sv = S(v, 4, 3) of rank r over F2, the construction,

described above provides a Steiner system S2 v = S(2 v, 4, 3) of rank rank (S2 v) ≤ r + v.

Furthermore, if all vectors h(c) are zero vectors, then rank (S2 v) = r + v − 1, otherwise

rank (S2 v) = r + v.

The natural question is under what conditions the Steiner system S(v, 4, 3) with rank r

is obtained by the construction, described above? The next statement answers this question

for the case v = 2m and r = 2m − m.

Theorem 3 . Let S be a Steiner system S(2m, 4, 3) with rank (S) = 2m −m over F2. Then

this system S is obtained from Lm−1 by the construction, described above.

Proof. Let S be a Steiner system S(2m, 4, 3) with rank (S) = 2m−m over F2. Let C be the

corresponding constant weight (v, 4, 4, M)-code where v = 2m and M = v (v − 1)(v − 2)/24.

Let v = 2 u, i.e. u = 2m−1. Since rank (C) = 2m − m, the dual code C⊥ is a linear code,

say [v, m, d⊥]-code. Taking into account the result of [12] we conclude immediately that
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d⊥ = v/2 = u and that for any codeword x ∈ C⊥ we have that wt(x) = v/2 or v. Without

loss of generality we can choose as a basis of C⊥ the following codewords:

x1 = (1111|1111|...|1111|1111|1111|1111|...|1111|1111),

x2 = (1111|1111|...|1111|1111|0000|0000|...|0000|0000),

.... ... ...

xm−2 = (1111|1111|...|0000|0000|1111|1111|...|0000|0000),

xm−1 = (1111|0000|...|1111|0000|1111|0000|...|1111|0000),

xm = (1100|1100|...|1100|1100|1100|1100|...|1100|1100).

Partition the coordinate set J = {1, 2, ..., v} of the code C into v/2 = u subsets J1, J2, ..., Ju,

where Ji = {2 i− 1, 2 i}. Partition each codeword c ∈ C into u subsets:

c = (c1 | c2 | ... | cu), supp(ci) = Ji.

The code C partition into two subcodes Ceven and Codd:

Ceven = {c ∈ C : c is a 2-even vector},
Codd = {c ∈ C : c otherwise}.

We claim that

|Ceven| =

(
u

2

)
, |Codd| =

u (u − 1)(u − 2)

24
× 8. (10)

Indeed, recall that

|C| =
v (v − 1)(v − 2)

24
=

u (u− 1)(u − 2)

24
× 8 +

(
u

2

)
, v = 2 u. (11)

But the number of 2-even vectors of weight 4 and length v = 2 u is not more than
(

u
2

)
. From

the other side, C is an incidence matrix of of S(v, 4, 3). Hence for any vector y of weight 3,

there is exactly one vector c ∈ C such that supp (y) ∈ supp (c). Choosing all possible such

vectors y of weight 3 with exactly one 2-odd block, we obtain immediately that Ceven should

contain all possible 2-even vectors of length v = 2 u and weight 4. We conclude that

|Ceven| =

(
u

2

)
. (12)
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From (11) and (12) we deduce that

|Codd| =
u (u − 1)(u − 2)

24
× 8. (13)

Consider Codd. First we note the following simple fact.

Lemma 8 Let Wodd be a constant weight (8, 4, 4, Nodd)-code with the following property: all

its codewords are 2-odd vectors. Then Nodd ≤ 8.

Proof. Denote by Weven the following constant weight (8, 4, 4, 6)-code, containing only

2-even vectors:

(11 | 11 | 00 | 00), (11 | 00 | 11 | 00), (11 | 00 | 00 | 11),

(00 | 00 | 11 | 11), (00 | 11 | 00 | 11), (00 | 11 | 11 | 00).

It is easy to see that for any code Wodd with Nodd codewords the union Wodd ∪ Weven is a

constant weight (8, 4, 4, N)-code where N = Nodd+Neven). It is well known that N ≤ 14; the

optimal (8, 4, 4, 14)-code corresponds to the Steiner system S(8, 4, 3) [15]. Since Neven = 6,

it follows that Nodd ≤ 8 for any code Wodd. �
The set Codd we divide into K subsets Ci1,i2,i3 where the integers i1, i2, i3 ∈ {1, 2, ..., u}:

Ci1,i2,i3 = {c = (c1 | ... | cu) ∈ Codd : supp (cis) ∈ Jis, s = 1, 2, 3}.

We claim that for any set Ci1,i2,i3 there is i4 ∈ {1, 2, ..., u} such that for any c ∈ Ci1,i2,i3

supp (c) ∈ ∪4
s=1Jis.

By definition of a Steiner system, for any c ∈ Ci1,i2,i3 there is a number i ∈ J , i �= is, s = 1, 2, 3

such that ci = 1. By the definition of Codd we have that i �∈ Jis, s = 1, 2, 3. This implies

that there is some i4 ∈ J such that i ∈ Ji4 . But any vector from Codd is orthogonal over F2

to any vector from C⊥. Using vectors xk, k = 2, 3, ...m − 1, given above partition the set J

into subsets of length 4:

J = J (1) ∪ J (2) ∪ ... ∪ J (v/4).
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Partition any codeword c = (c1, c2, ..., cv) ∈ C into blocks of length 4 according to this

partition:

c = (c1 | c2 | ... |cu/2), supp (ci) ∈ J (i).

Now consider any c ∈ Ci1,i2,i3 and let i ∈ Ji4 be such that ci = 1. We claim that there are

two numbers j1 and j2 such that

J (j1) = J�1 ∪ J�2 , andJ (j2) = J�3 ∪ J�4

where {i1, i2, i3, i4} = {�1, �2, �3, �4}. If not, we immediately obtain contradiction with or-

thogonality of that c and any linear combination of vectors x2,x3, ...,xm−1. Furthermore,

the number i4 is the same for any c from Ci1,i2,i3. Hence for any triple (i1, i2, i3) from the set

J = {1, 2, ..., u} there is an unique 4-tuple from J containing it. Thus, any set Ci1,i2,i3 induces

on the eight positions of Ji1 , Ji2 , Ji3, and Ji4 a constant weight (8, 4, 4, Ni1,i2,i3)-code, which

consists only of 2-odd vectors. By Lemma 8 any such code has the cardinality Ni1,i2,i3 ≤ 8.

We conclude, therefore, that

|Codd| ≤ u (u − 1)(u − 2)

24
× 8. (14)

From (13) and (14) we deduce that

|Codd| =
u (u − 1)(u − 2)

24
× 8. (15)

But there are u (u−1)(u−2)
6

distinct sets Ci1,i2,i3 and each set has not more than 8 codewords.

We conclude from (15), that each such set Ci1,i2,i3 contains exactly 8 codewords. Since there

are exactly u (u−1)(u−2)
24

distinct 4-tuples and any two distinct such 4-tuples have intersection

not more that in two elements, we deduce that the set of 4-tuples (i1, i2, i3, i4) from J form

a Steiner system S(u, 4, 3). Thus, the Steiner system S(2 u, 4, 3) is obtained from S(u, 4, 3)

by construction, described above. �
As a direct corollary of Theorems 2 and 3 and Proposition 4, we obtain the following

result.

Theorem 4 . Let S be a Steiner system S(v, 4, 3), v = 2m with rank (S) = v − m over F2.

Let C be the corresponding constant weight (v, 4, 4, v (v − 1)(v − 2)/24)-code. Then this code
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C is a subset of the Vasiliev (v, 4, 2v−m)-code obtained by the GC-construction, described by

Proposition 4.

§ 6. Automorphism groups of Steiner systems S(16, 4, 3) of rank 12

Definition 6 For any Steiner system S let

Q = StabG4(S).

For any Steiner system S write Stab(S) for StabS16(S).

Lemma 9 Let S be a Steiner system and τ ∈ Stab(S) ⊂ G = S16. Let τ ′ ∈ QτQ. Then

τ ′ ∈ Stab(S).

Proof. Similar to the proof of Lemma 1. �

Lemma 10 Let S be a Steiner system of rank 12 and τ ∈ Stab(S). Then τ = g ∈ G4 or

τ = xσ3g ∈ G4σ3G4, where x ∈ Q\G4/N(σ3) is the (G4 −N(σ3))-double coset representative

and g belongs to the Q-coset of G4, uniquely determined by x.

Proof. Indeed, suppose τ ∈ Stab(S). By Proposition Lemma 5 of [9], the permutation τ

belongs to G4 or G4σ3G4. Suppose τ = xσ3g, where x, g ∈ G4. Then τS = S is equivalent

to

xσ3gS = S. (16)

We will show that if x satisfies this equation then any x′ ∈ QxN(σ3) will also satisfy it.

Indeed, let x′ = pxx1, where x1 ∈ N(σ3) and p ∈ Q. Let x2 = σ3x1σ3 ∈ G4. Multiplying

both sides of (16) by p we obtain

pxσ3gS = pxx1x
−1
1 σ3gS = x′σ3g

′S = S,

where g′ = x−1
2 g ∈ G4. Next, we show that if (x, g) is a solution to (16), then g belongs to

the unique Q-coset. Suppose for a given x there exist g and g′ which satisfy (16). Thus

xσ3gS = xσ3g
′S,

which is equivalent to gS = g′S, i.e. g−1g′ ∈ Q or g′ ∈ gQ. Thus, for a given x, the

Q-coset of g is uniquely determined by x. �
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Lemma 11 Let S be a Steiner system and Stab(S) = Stab(S) be its Automorphism group.

Let Q = StabG4(S). Then

Stab(S) = Q ∪
⋃
i

Qxiσ3giQ,

where xi ∈ Q\G4/N(σ3) and gi ∈ G4/Q is uniquely determined by xi. The elements xi, gi

run over all pairs that satisfy (16).

Proof. The double coset decomposition follows directly from Lemmas 9 and 10. �

Lemma 12 Let S be a Steiner system, Stab(S) = Stab(S) its Automorphism group and

|Stab(S)| the number of elements. Following the notations of Lemma 11, we have

|Stab(S)| = |Q| ×
(

1 +
∑

i

|Q|
|y−1

i Qyi ∩ Q|

)
,

where yi = xiσ3gi.

Proof. For any (Q-Q)-double coset we have QyiQ = QyiQy−1
i · yi so that

QyiQ =
⋃
j

Qyizij, where zij ∈ y−1
i Qyi ∩ Q\Q.

Thus the number of Q-cosets in QyiQ is equal to

|Q|
|y−1

i Qyi ∩ Q| .

Multiplying it by the number of elements of Q-coset we obtain the formula. �
Summarizing Lemmas 11 and 12, we have

Corollary 2 Let S be a Steiner system. Then

Stab(S) = Q ∪
⋃
i

⋃
j

Qyizij ,

where yi = xiσ3gi and zij ∈ y−1
i Qyi ∩ Q\Q.

Thus, we arrive to the following one of main results of the paper.
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Theorem 5 The orders of the automorphisms groups Stab(i, j, k) of all extended Steiner

systems (i, j, k) of length 16 with rank 12 over F2 are given in the following table:

Steiner (i, j, k) StabG4 |Stab(i, j, k)|
(1, 1, 2) 768 768

(1, 1, 4) 1024 3 × 1024

(1, 2, 1) 512 3 × 512

(1, 2, 2) 256 256

(1, 2, 5) 512 3 × 512

(1, 2, 14) 256 256

(1, 2, 15) 256 256

(1, 6, 1) 768 768

(1, 6, 2) 3072 7 × 3072

(1, 6, 5) 1024 3 × 1024

(2, 1, 5) 96 96

(2, 2, 2) 32 3 × 32

(2, 2, 15) 32 4 × 32

(3, 2, 158) 128 6 × 128

(3, 2, 162) 128 6 × 128

As it should be expected, the homogeneous system (1, 6, 2) has the largest stabilizer

group (see [6, proposition 15]), which has all derivative Steiner Triples Systems S(15, 3, 2)

with number 1 (see [6]). The other homogeneous system with the same derivative systems is

the system (1, 1, 1) with rank 11 over F2 (the points and planes of affine geometry AG(4, 2)).

Note that all Steiner systems S(16, 4, 3) with rank 12 have the derivative Triple systems

with numbers 1 and 2 only.

§ 7. Vasiliev codes of length 16 and Steiner systems S(16, 4, 3) of rank 12

Now we give the Steiner systems S(16, 4, 3), which can be formed by the codewords of

weight 4 from all Vasiliev codes above.
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Definition 7 Let C be a code from C0. We say that a Steiner system S = S(16, 4, 3)

belongs to C if there exist g ∈ G16 such that S ⊂ gC.

Proposition 7 If a Steiner system S belongs to C then there exist C ′ ∈ Orb(C) such that

S ⊂ C ′.

Proof. There exist g = (τ,h) ∈ G16 = S16 � H16 such that

S ⊂ C ′, where C ′ = τ(C + h).

This implies that C ′ has zero word, i.e. h ∈ C. Moreover since S satisfies the parity rule it

implies that C ′ satisfies the parity rule as well. Thus C ′ ∈ C0. �
The following statement gives the interrelationship between Vasiliev codes of length 16

and Steiner systems S(16, 4, 3).

Theorem 6 Extended Vasiliev codes (i, j, k) of length 16 and rank 12 over F2 contain the

following S(16, 4, 3) systems (i′, j′, k′) of rank 12 or less over F2. The first column of the

table below gives the Vasiliev codes and the corresponding Steiner systems are given at the

other columns of the same row):

(1, 1, 2) (1, 1, 2)

(1, 1, 4) (1, 1, 4)

(1, 2, 1) (1, 1, 1) (1, 2, 1) (1, 6, 2)

(1, 2, 2) (1, 1, 2) (1, 2, 2) (1, 2, 14) (1, 6, 1) (2, 1, 2)

(1, 2, 5) (1, 1, 4) (1, 2, 5) (1, 2, 15) (1, 6, 5)

(1, 5, 1) (1, 6, 2) (1, 6, 5)

(2, 2, 1) (1, 2, 1) (1, 2, 5) (1, 2, 14)

(2, 2, 2) (2, 1, 2) (2, 2, 2)

(2, 2, 5) (1, 2, 2) (1, 2, 15) (2, 2, 15)

(2, 3, 40) (2, 2, 2) (2, 2, 15) (3, 2, 158) (3, 2, 162)

(3, 3, 3) (1, 6, 1) (3, 2, 162)

(3, 3, 9) (3, 2, 158)

25



As we see from the table above the Vasiliev (1, 2, 2)-code contains 5 non-isomorphic

Steiner systems S(16, 4, 3) (namely, (1, 1, 2), (1, 2, 2), (1, 2, 14), (1, 6, 1), and (2, 1, 2)) all of

them with rank 12 over F2. The Vasiliev (1, 2, 1)-code contains 3 non-isomorphic Steiner

systems S(16, 4, 3), one of rank 11 (the system (1, 1, 1)) and two of rank 12 (the systems

(1, 2, 1) and (1, 6, 2)).
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