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Abstract

A Steiner quadruple system S(v, 4, 3) of order v is a 3-design T (v, 4, 3, λ) with
λ = 1. In the previous paper [1] we classified all such Steiner systems S(16, 4, 3) of
order 16 with rank 13 or less over F2. In particular, we have proved that there is
one S(16, 4, 3) of rank 11 (the points and planes of affine geometry AG(4, 2)), fifteen
systems S(16, 4, 3) of rank 12 and 4131 systems of rank 13. In this paper we describe
all non-isomorphic S(16, 4, 3) of rank 14 over F2. All these Steiner systems S(16, 4, 3)
can be obtained by the generalized doubling construction, which we give here. Our
main result is that there are exactly 684764 non-isomorphic Steiner quadruple systems
S(16, 4, 3) of order 16 with rank 14. We found all non-isomorphic homogenious systems
with rank 14 over F2.

∗The paper has been written under the partial financial support of the Russian fund for the fundamental
research (the number of project 03 - 01 - 00098)
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§ 1. Introduction

A Stener system S(n, k, t) is a pair (X, B) where X is a v-set and B is a collection of
k-subsets of X such that every t-subset of X is contained in exactly one member of B.

A system S(v, 3, 2) is called a Steiner triple system (briefly STS(v)) and a system S(v, 4, 3)
is called a Steiner quadruple system (briefly SQS(v)). The necessary condition for existence
of an SQS(v) is that v ≡ 2 or 4 (mod 6). Hanani [2] proved that the necessary condition
v ≡ 2 or 4 (mod 6) for the existence of an S(v, 4, 3) is also sufficient.

Two systems SQS(X, B) and SQS(X ′, B′) are isomorphic, if there is a bijection α : X →
X ′ that maps the quadruples of B to those of B′. An automorphism of SQS(X, B) is an
isomorphism of (X, B) to itself. The determination of number of the non-isomorphic SQS(v),
which we will denote by N(v), is the major problem in this area. Barrau [3] proved that
N(v) = 1 for v ≤ 10 and Mendelson and Hung [4] derived with the help of a computer that
N(14) = 4.

In [5] it was shown that N(16) ≥ 8. Using computer assisted computations, Gibbons,
Mathon and Corneil [6] proved that N(16) ≥ 282. The knowledge of all non-isomorphic
1-factorizations of K8 (the complete graph on 8 vertices) together with their automorphism
groups allowed Lindner and Rosa [7], using the classical doubling construction, obtained the
bound N(16) ≥ 31021 (for the number of systems with rank exactly 14 over F2) . They
slightly improved this bound in [8]: N(16) ≥ 31301 (adding systems with rank less or equal
13 over F2). No progress has been made in this regard since this result of Lindner and Rosa
(see [9], [10]).

Our result of [1] can be formulated as follows. Among the non-isomorphic Steiner systems
S(16, 4, 3) of order v = 16 there are:

– one S(16, 4, 3) of rank 11 (the points and planes of 4-dimensional affine geometry
AG(4, 2) over F2);

– 15 systems S(16, 4, 3) of rank 12;
– 4131 systems S(16, 4, 3) of rank 13.
This paper is a natural continuation of our previous paper [1] where we started the

systematic investigation of Steiner systems S(16, 4, 3) of order 16 with given rank over the
field F2. Here we classified all Steiner systems S(16, 4, 3) of order 16 with rank 14 over the
field F2. All such systems can be obtained by the generalized doubling construction, which
we introduce here.

Our main result here can be formulated as follows. Among the non-isomorphic Steiner
systems S(16, 4, 3) of order v = 16 there are:

– 684764 systems S(16, 4, 3) of rank 14 over F2.
The paper is organized as follows. Preliminary results and terminology are given in § 2.

In § 3 we describe the classical doubling construction of SQS(2n) using given SQS(n). In § 4
we consider the general properties of SQS(n) with rank n−2 over F2. Section § 5 is dedicated
to the generalized doubling construction of Steiner systems S(n, 4, 3) of arbitrary order n.
The paragraph § 6 contains the main result of the paper: classification of all non-isomorphic
Steiner systems S(16, 4, 3) with rank 14 over F2. In § 7 we give some results concerning
the Steiner triple systems S(15, 3, 2) which occur as derivative of all these non-isomorphic
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S(16, 4, 3) with rank 14. In particular, we found only such triple systems with numbers
1, 2, ..., 22 and 62. We also found all homogeneous Steiner systems S(16, 4, 3) of rank 14
(and from [1] we know such systems with ranks 11, 12 and 13). We give also the distribution
of the number β (the number of non-somorphic derivative S(15, 3, 2) of given S(16, 4, 3))
over all these systems S(16, 4, 3) with rank 14.

§ 2. Preliminary results

Let E be a binary alphabet of size 2 : E = {0, 1}. A binary code of length n is an
arbitrary subset of En. Denote such binary code C with length n, with the minimal distance
d and cardinality N as (n, d, N)-code. Denote by wt(x) the Hamming weight of vector x
over E. For a (binary) code C denote by 〈C〉 the linear envelope of words of C over F2. The
dimension of space 〈C〉 is called the rank of C over F2 and is denoted rank(C).

Denote by (n, w, d, N) a binary constant weight code W of length n, with weight of all
codewords w, with minimal distance d and cardinality N .

For any two subsets Y and Z of En denote by d(Y, Z) the minimal distance between Y
and Z:

d(Y, Z) = min{d(y, z) : y ∈ Y, z ∈ Z}.
For vector v = (v1, ..., vn) ∈ En denote by supp(v) its support, i.e. the set of indices with
nonzero positions:

supp(v) = {i : vi 	= 0}.
Denote by v̄ a vector, which is a complementary to v, i.e. v̄i = vi + 1.

If E = F2 is a field of order 2, the binary (n, d, N)-code A which is a linear k-dimensional
space over Fq is denoted by [n, k, d]-code. For binary vectors x = (x1, · · · , xn) and y =
(y1, · · · , yn) denote by (x · y) = x1y1 + · · · + xnyn their inner product over F2. For a linear
[n, k, d]-code A denote by A⊥ its dual code:

A⊥ = {v ∈ F
n
2 : (v · c) = 0, ∀ c ∈ A}.

It is clear that A⊥ is a linear [n, n − k, d⊥] code with some minimal distance d⊥.
Denote by En

2 the set of all binary vectors of length n of weight 2. Let Jn = {1, 2, ..., n}
be the coordinate set of En and let Sn be the full group of permutations of n elements. For
any i ∈ Jn and π ∈ Sn, define the image of i under the action of π by π(i). For any set X
of En and any π ∈ Sn denote πX = {π(x) : x ∈ X}.

A binary incidence matrix of a Steiner system S(v, 4, 3) is the binary constant weight
code (v, 4, 4, v(v−1)(v−2)/24), denoted by S which is strongly optimal [15]. In our notation
the connection between the system (X, B) and the code S looks as follows:

B = {supp(v) ⊂ X : v ∈ S}.
For any Steiner system S(v, 4, 3) denote by µs(c), where c ∈ S and s ∈ {0, 1, 2}, the number
of codewords x ∈ S with distance 2 (k − s) at c, i.e.

µs(c) = |{x ∈ S : |supp(c) ∩ supp(x)| = s}|, s ∈ {0, 1, 2}.
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The numbers µs(c) do not depend on the choice of c and can be computed explicitly (see
Theorem 5 in [15]). In particular, for S(16, 4, 3) we have:

µ0 = 39, µ1 = 64, µ2 = 36. (1)

For the case of Steiner systems the definition of equivalence can be formulated as follows.

Definition 1 Two Steiner systems (X, B) and (X ′, B′) of order 16 are isomorphic, if
their incidence matrices S and S ′ are equivalent as constant weight codes, i.e. if there exists
some permutation τ ∈ S16 such that S and τ S ′ coincide up to the permutation of rows.

§ 3. SQS(2n) obtained by the doubling construction from SQS(n)

In this section, we describe the classical doubling construction of SQS(2n) from given
SQS(n). Both constructions were described in [8], which we give here almost without changes.
Denote by F = F1, F2, . . . , Fn−1 a full partition of En

2 into subcodes with distance 4, i.e. for
any i, i = 1, . . . , n − 1 the set Fi is a constant weight (n, 2, 4, n/2)-code. Let F and H be
any such partitions of En

2 , where H = H1, . . . , Hn−1.
Construction A∗. Let (X, A) and (Y, B) be any two Steiner systems S(n) = S(n, 4, 3)

where X ∩ Y = ∅. Let F and H where F = F1, . . . , Fn−1 and H = H1, . . . , Hn−1 be any full
partitions of En

2 and let α be any permutation from Sn. Define a constant weight code S on
coordinate set Q = X ∪ Y as follows:
(1) Any codeword belonging to A or B belongs to S;
(2) if i1, i2 ∈ X and j1, j2 ∈ Y then c with supp(c) = {i1, i2, j1, j2} is a codeword of C, if
and only if ∈ Fi with supp(f) = {i1, i2}, h ∈ Hj with supp(h) = {j1, j2} and α(i) = j.

Proposition 1 [8] Under construction, described above the set (Q, S) is a Steiner system
S(2n, 4, 3).

In [7] these authors, using this construction and knowledge of all automorphisms groups
of these partitions, derived the lower bound for N(16) ≥ 31021.

Denote by F1, F2, . . . , F6 the all non-isomorphic 1-partitions of E8
2 , obtained in [22,23].

Agree that F5 and F6 are two partitions, not containing a sub-partitions of index 2 (see [24]),
i.e. subcodes of partitions F5 (respectively, F6) do not form a partition of E4

2 for any choice
of 4 positions from E8

2 .
Denote by {Fi} the orbit by action of S8 on Fi:

{Fi} = OrbS8(Fi), i = 1, . . . , 6.

Simple arguments show that [7] for any two fixed S(8, 4, 3) systems (X, A) and (Y, B)
there are at least |{Fi}| · |{Fj}| ·7! distinct S(16, 4, 3) obtained by Construction A∗ by taking
any Fi ∈ {Fi} for F and any Fj ∈ {Fj} for G with j ∈ {5, 6} and i 	= j. In addition, every
such S(16, 4, 3) has exactly two subsystems S(8, 4, 3), namely (X, A) and (Y, B). It follows
[7] that there are at least

NA∗ =
7!

13442

(
5∑

i=1

|{Fi}| · |{F6}| +
4∑

i=1

|{Fi}| · |{F5}|
)

.
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By this construction it can be seen [7] that all resulting systems S(16, 4, 3) have rank exacxtly
14 over F2. The exact computation shows [7] that NA∗ = 31021. Using 280 systems found
in [25], for which the number of sub-systems S(8, 4, 3) different from two (which means that
these 280 systems S(16, 4, 3) have the rank less or equal to 13 over F2), one can get [7] that
N(16) ≥ 31301.

§ 4. General properties of SQS(16) with rank 14 over F2

Let S be an arbitrary Steiner system S(16, 4, 3) of rank 14 over F2. We consider the
general properties of such system.

Applying the appropriate permutation of coordinates, S can be presented in the form,
when the [16, 8, 2]-code S⊥, dual to S, looks as follows:

S⊥ = {u0, u1, u2, u1 + u2}, (2)

where u0 is the zero vector, u1 = (1111111100000000), and u2 = (0000000011111111). Thus
we split coordinates of S into two blocks of eight coordinates such that any c ∈ S consists
of two vectors c = (c1 | c2) where each vector ci satisfies to the overall parity checking:

wt(ci) ≡ 0 (mod 2), i = 1, 2

(we call it a parity rule).

Definition 2 Let S be a Steiner system (16, 4, 3) of rank 14 over F2 with dual code (2).
Define the subset Suv of S where u, v ∈ {0, 2, 4} as follows:

Suv = {c = (a | b) ∈ S : wt(a) = u, wt(b) = v}.

These words are called (u, v)-words.

Lemma 1 Let S be a Steiner system (16, 4, 3) of rank 14 over F2 with dual code (2). Then
S is a union of three subsets

S = S40

⋃
S04

⋃
S22

where S40 (respectively S04) is a Steiner system S(8, 4, 3) and S22 has cardinality 112.

Proof. Follows from definition of Steiner system S(16, 4, 3). �
The group (subgroup of S16) of two elements which permutes the blocks is identified with

S2. An element τ1 × τ2 ∈ S8 × S8 ⊂ S16 acts on (x |y) in the natural way:

(τ1 × τ2)(x |y) = (τ1(x) | τ2(y)).

We have the following statement.
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Lemma 2 Let S be an arbitrary Steiner system S(16, 4, 3) of rank 14 over F2 with dual code
(2). Suppose there exists a permutation σ ∈ S16 so that σS satisfies the parity rule. Then
σ ∈ S2 � (S8 × S8).

Proof. Since S satisfies parity rule, we have that

(x · u1) = 0, (3)

for any x ∈ S. Similarly, since σS satisfies the parity rule, we have that

(σ(x) · u1) = 0, for any x ∈ S.

Multiplying both vectors σ(x) and u1 by σ−1, we obtain

(x · σ−1(u1)) = 0, for any x ∈ S. (4)

Let u′ = u1 + σ−1(u1). From (3) and (4) we have that

(x · u′) = 0, for any x ∈ S.

Thus u′ ∈ S⊥ and consequently (recall that S⊥ is a vector space) σ−1(u1) ∈ S⊥. Taking into
account that σ−1(u1) is of weight 8, we obtain that σ−1(u1) is equal to either u1 or u2. So
σ(u1) = u1 or σ(u2) = u1, in other words, σ either stabilizes the blocks or permutes them.

�
Recall that E8

2 is the subset of E8, formed by the all vectors of weight 2. Denote any
codeword of S by c = (a | b).

Definition 3 Let S be a Steiner system (16, 4, 3) of rank 14 over F2 with dual code (2).
Let c = (a | b) be any codeword of S such that wt(a) = wt(b). Denote by Al(b) (respectively,
by Ar(a)) the sets obtained by fixing vector b (respectively a) :

Ar(a) = {b : (a | b) ∈ S}, Al(b) = {a : (a | b) ∈ S}.
Lemma 3 Suppose the conditions of lemma 2 are satisfied. Let c = (a | b) be any codeword
of S such that wt(a) = wt(b). Then the set Al(b) (respectively Ar(a)) is a Steiner system
S(8, 2, 1) (or, equivalently, a constant weight (8, 2, 4, 4) code).

Proof. The fact that Al(b) (respectively, Ar(a)) is a constant weight code (8, 2, 4, Nl(b))
with minimal distance 4 follows from definition of such set. Indeed, any two words of S
have distance not less than 4, implying that any two distinct words x and x′ of Al(b) have
distance not less than 4. From the other side, since S is a 3-design, nonzero positions of
vectors x from Al(b) should cover all 8 positions of the first coordinate block of S. This
means that for any b ∈ E8

2 the set Al(b) is a 1-design or S(8, 2, 1). This follows also from
counting arguments. In average, over all b ∈ E8

2 , we have that

¯|Al| =
1

|E8
2 |

×
∑
b∈E8

2

|Al(b)| =
|C(2)|
|E8

2 |
= 4.

From the other side, |Al(b)| can not be more than 4 for any b ∈ E8
2 . Thus |Al(b)| = 4.

Similarly, the same equality is valid for |Ar(a)|. �
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Definition 4 Define the sphere Wi ⊂ E8
2 , i = 1, 2, ..., 8 of radius two as a set of seven

vectors e1(i), ..., e7(i) from E8
2 , which satisfy to the following properties:

1). {i} ∈ supp(ej(i), j = 1, ...7.
2). d(ej(i), es(i)) = 2, for any j 	= s.
For example, the sphere W8, which we use very often, consists of the following vectors, which
we denote for short es(8) = es:

e1 = (00000011), e2 = (00000101),
e3 = (00001001), e4 = (00010001),
e5 = (00100001), e6 = (01000001),
e7 = (10000001).

Note that the stabilizer of W8 in S8 fixes the last nonzero coordinate of ei(8) and is
isomorphic to S7.

Lemma 4 Suppose we are in conditions of lemma 2 and let (a1 | b1) and (a2 | b2) be any
two codewords of C(2). Let a1 and a2 (respectively, b1 and b2) be such that d(a1, a2) = 2
(respectively, d(b1, b2) = 2). Then the corresponding codes Ar(a1) and Ar(a2) (respectively,
Al(b1) and Al(b2)) do not intersect each other, i.e. Ar(a1) ∩ Ar(a2) = ∅ (respectively,
Al(b1) ∩ Al(b2) = ∅).

Proof. In contrary, assume that there is x such that x ∈ Ar(a1)∩Ar(a2). Then we have

d((a1 |x), (a2 |x)) = d(a1, a2) = 2,

i.e. a contradiction, since (a1 |x) and (a2 |x) are distinct codewords of C. The proof of the
second statement is similar. �

Lemma 5 Suppose we are in conditions of lemma 2 and let Wi = {e1(i), ..., e7(i)} be any
sphere, i = 1, 2, . . . , 8. Then the set of codes Al(e1(i)), Al(e2(i)), ..., Al(e7(i)) forms a
partition of E8

2 .

Proof. Since
|Wi| × |Al(es(i))| = |E8

2 | = 28,

we have to check only that any two distinct codes Al(ej(i)) and Al(es(i)) where j 	= s
and j, s ∈ {1, ..., 7} have empty intersection. But this follows from lemma 4, since for any
ej(i), es(i) from Wi we have that d(ej(i), es(i)) = 2. �

Remark 1 It is easy to see that the results above, which we derived for Steiner system
S(16, 4, 3) of rank 14 over F2, are valid for any S(n, 4, 3) of arbitrary order n ≥ 16 with rank
n − 2 over F2 such that n/2 ≡ 2 or 4 (mod 6).

§ 5. Generalized doubling construction of S(16, 4, 3) with rank 14 over F2
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Now we describe the general doubling construction of Steiner systems S(16, 4, 3) with
rank 14 over F2. This construction is induced by the general doubling construction of the
extended binary perfect nonlinear (16, 4, 211)-codes of rank 14 over F2, which we described
in [15]. Indeed, the set of codewords of weight four of any such (16, 4, 211)-code with zero
codeword forms a Steiner system S(16, 4, 3).

It is convenient for us to present such a system S(16, 4, 3) by the corresponding constant
weight (16, 4, 4, 140) code, which uniquely defines this system [16], and which we denote here
by S. Denote by S the set of all such distinct (16, 4, 4, 140) codes S. Our purpose now is
to parameterize all these Steiner systems, using the canonical partitions of E8

2 . We can do
it using the special subsets of S, called headings, formed by the two partitions, connected
with the two spheres W8 = {es : s = 1, ..., 7} which occur on the left and right hand sides
(the first and the second blocks) of the codewords. We start with the definition of heading
of a code. Clearly when c = (a | b) runs over S, each of two vectors a and b run over the
set E8

2 . In particular, when a runs over the sphere W8 the corresponding codes Ar(a) form
a partition of E8

2 ,

E8
2 =

⋃
a∈W8

Ar(a) =
7⋃

s=1

Ar(es).

Similarly, when b runs over the set W8, the codes Al(b) also form a partition of E8
2 .

Denote by Ω the set of all distinct partitions Li = (Li,1, Li,2, Li,3, Li,4) of E8
2 into (binary

constant weight) (8, 2, 4, 4) codes Li,s, s = 1, 2, 3, 4. Moreover the following result holds.

Proposition 2 (Computational result). There exist exactly 6240 different partitions of E8
2

which can be arranged under action of S8 into six orbits OrbS8(Li), ordered according to the
indices i of OrbS8(Li).

We assume that the unique Steiner system S(8, 4, 3) is formed by the following vectors
(in addition to words of all zeroes and ones):

(1111|0000), (0000|1111),
(1100|1100), (0011|0011),
(1100|0011), (0011|1100),
(1010|0110), (0101|1001),
(1010|1001), (0101|0110),
(1001|1010), (0110|0101),
(1001|0101), (0110|1010).

Denote by P its stabilizer in S8 and by P ′ its stabilizer in the group S7.

Definition 5 Define the group:

G = S2 � (P × P ) ⊂ S16
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It is known (see, for example, [8]) that |P | = 1344. Recall Lemma 1 that any system S of
rank 14 (with dual code S⊥ given by (2)) is partitioned into three subsets S40, S04 and S22.
Without loss of generality, we can assume from now that all our systems S from S are such
that the subsets S40 = Al(0) and S04 = Ar(0) of 14 elements are obtained from the Steiner
system given above. This condition increases the number of non-equivalent partitions of E8

2

since we consider the P -equivalence and P ′-equivalence.

Proposition 3 (Computational result). Let Ω be the set of all 6240 different partitions of
E8

2 into (8, 2, 4, 4) codes. Then Ω splits into 43 P -orbits OrbP (Li) (i = 1, . . . , 43) and 62
P ′-orbits OrbP ′(L′

i). We assume that the 62 non-equivalent partitions L′
i are chosen so that

Li = L′
i, where i = 1, . . . , 43.

We denote L′
i via Li, i = 1, . . . , 62 and call them canonical partitions of E8

2 .
For any such canonical partition Li, denote by StabP (Li) the stabilizer of Li in the group

P and by Qi ⊂ S7 a group of permutations of its seven components Li,1, Li,2, . . . , Li,7 induced
by the automorphisms of P :

Qi = {π ∈ S7 : ∃ g ∈ StabP (Li) : gLi,s = Li,π−1(s), i = 1, . . . , 7}.

For an element a ∈ E8 and set X ⊆ E8 denote:

a × X = {(a |x) : x ∈ X}, X × a = {(x |a) : x ∈ X}.

Definition 6 Let S be a (16, 4, 4, 140) code with rank 14 over F2. Define the following
subset F = F (S) of S (of 56 words), consisting of two partitions (with 7 common words
counted twice)

F (S) =

7⋃
s=1

{(es |y) : y ∈ Ar(es)}
⋃ 7⋃

s=1

{(x | es) : x ∈ Al(es)}. (5)

We say that S has a heading F and for the sake of simplicity write as:

F =

7⋃
s=1

es × Ar(es)
⋃ 7⋃

s=1

Al(es) × es.

Assume that the partition Al(e1), ..., Al(e7) is equivalent to Li for some i, i = 1, ..., 43
and the partition Ar(e1), ..., Ar(e7) is equivalent to Lj for some j, j = 1, ..., 62. Recall
that Li (respectively, Lj) are among of the 43 (respectively 62) canonical (non-equivalent)
partitions, given by proposition 3. All these partitions Li, i = 1, ..., 62 are ordered, according
to the vectors es of the ball W8:

Li = (Li,1, . . . , Li,7) where es ∈ Li,s for s = 1, . . . , 7.
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Without loss of generality we can assume that i ≤ j (if not we can consider the Steiner
system S ′ obtained from S by switching the sides). Furthermore, by the corresponding
permutation of coordinates we can obtain the following ordering of Li:

Li = (Li,1, ..., Li,7), Li,s = Al(es), (6)

where the vectors es (s = 1, ..., 7) are given by definition 4. In such way we arrive to the
following natural canonical heading.

Definition 7 (Canonical (i, j, k) heading). Let 1 ≤ i ≤ 43 and i ≤ j ≤ 62 and Li, Lj

are two canonical partitions. Define the set of 56 (where 7 words are counted twice) elements
as follows:

F
(k)
i,j =

7⋃
s=1

Li,π(s) × es

⋃ 7⋃
s=1

eπ(s) × Lj,s

=

7⋃
s=1

{(x | es) : x ∈ Li,π(s)}
⋃ 7⋃

s=1

{(eπ(s) |y) : y ∈ Lj,s}.

where π = π−1
k , k = 1, 2, ..., m(i, j), and

{π1, , π2, ..., πm(i,j)}

is a fixed set of the (Qj-Qi)-double-coset representatives of S8.

We know all canonical headings (i, j, k).

Proposition 4 (Computational result). There exist 339716 different canonical headings
(i, j, k).

Using canonical headings, now we can define canonical Steiner systems C.

Definition 8 (Canonical Steiner system). Let S be any Steiner system from S. We say

that S is a canonical (i, j, k) code, denoted by S
(k)
i,j if S has a canonical heading

F (S
(k)
i,j ) = F

(k)
i,j .

Now the important question is does any system S from S equivalent to a canonical one
S

(k)
i,j ?

Proposition 5 Let S ∈ S and let F = F (S) be the heading of S. Then S is G-equivalent

to a canonical Steiner system S
(k)
i,j ∈ S with heading F

(k)
i,j , where 1 ≤ i ≤ 43 and i ≤ j ≤ 62

and where the permutation πk is defined by definition 7.
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Proof. Let S be any Steiner system from S. Define the following subset of S

Y2 =
7⋃

s=1

Al(es) × es = {(y | es) : es ∈ W8, y ∈ Al(es)}, (7)

where Al(es), s = 1, . . . , 7 is a partition Al of E8
2 . Assume that Al is P -equivalent to Li for

some i. Thus there exists a permutation τ2 ∈ P such that τ2Al = Li and in particular

τ2Al(es) = Li,τ−1
2 (s). (8)

Let 18 be the identity element of S8. Applying the element τ2 × 18 to S, its subset defined
(7), and taking into account (8), we have

(τ2 × 18)Y2 = (τ2 × 18)
{ 7⋃

s=1

Al(es) × es

}

=

7⋃
s=1

(τ2Al(es)) × es

=

7⋃
s=1

Li,τ−1
2 (s) × es

=

7⋃
s=1

Li,s × eτ2(s).

Set S ′ = (τ2 × 18)S, and define the following subset of S ′

Y1 =

7⋃
s=1

es × Ar(es) = {(es |y) : es ∈ W8, y ∈ Ar(es)},

where Ar(es), s = 1, . . . , 7 is a partition Ar of E8
2 . Assume that Ar is P ′-equivalent to Lj

for some j. Thus there exists an element τ1 ∈ P ′ such that τ1Ar = Lj and τ1W8 = W8. In
particular

τ1Ar(es) = Lj,τ−1
1 (s). (9)

Applying the element 18 × τ1 to S ′, its subset Y1, and taking into account (9), we have

(18 × τ1)Y1 = (18 × τ1)
{ 7⋃

s=1

es × Ar(es)
}

=
7⋃

s=1

es × (τ1Ar(es))

=
7⋃

s=1

es × Lj,τ−1
1 (s).

11



Moreover, we have

(18 × τ1)
{ 7⋃

s=1

Li,s × eτ2(s)

}
=

7⋃
s=1

Li,s × τ1(eτ2(s))

=
7⋃

s=1

Li,s × eτ3(s),

for some permutation τ3 ∈ S7. Since eτ3(s) ∈ Lj,τ−1
1 (s) we conclude that τ3 = τ−1

1 . Set

S ′′ = (18 × τ1)S
′. Then S ′′ is equivalent to S and its heading by definition is equal to

7⋃
s=1

Li,s × eτ−1
1 (s)

⋃ 7⋃
s=1

es × Lj,τ−1
1 (s).

Without loss of generality we can always assume that i ≤ j (if not apply the permutation
of S2 from the definition of G, i.e. switch the blocks of coordinates). �

It is clear that a Steiner system S can have different headings as well as different Steiner
systems may have the same heading.

Now we want to describe the general doubling construction of Steiner systems S(16, 4, 3)
of rank 14 over F2.

Definition 9 Let Ms, s = 1, 2, . . . , 7 be the set of constant weight (8, 2, 4, 4) codes con-
taining es. Let

M =
7⋃

s=1

Ms

be the set of all constant weight (8, 2, 4, 4) codes.

It is easy to check that there are 15 codes in every set Ms so that the total number of
(8, 2, 4, 4) codes is 105. We consider functions from E8

2 to M.

Definition 10 (Admissible function) We say that a function Λ: E8
2 → M is admissible

if there exist 1 ≤ i ≤ 43, i ≤ j ≤ 62, and a permutation πk such that:
1). Λ(eπ−1(s)) = Lj,s, for s = 1, . . . , 7.
2). Λ(x) = M ∈ Ms, where x ∈ Li,π−1(s) and s = 1, . . . , 7.
Such function will be called an (i, j, k)-admissible function.

Admissible functions are used to parameterize canonical Steiner systems. Indeed for any
canonical Steiner system S = S

(k)
i,j , and any x ∈ E8

2 , set Λ(x) = Ar(x) (see Definition 3).
Then

S22 =
⋃

x∈E8
2

x × Λ(x),

where Λ is (i, j, k)-compatible by definition.

12



§ 6. Derived triple systems

For an SQS(v), given by the pair of sets (X, B), a derived triple system (briefly DTS(v−
1)) of (X, B) is a pair (Xa, Ba), where Xa = X \ {a} and Ba = {b \ {a} : a ∈ b ∈ B}.
It is obvious, that every derived triple system is a Steiner triple system S(v − 1, 3, 2). For
v = 16 we obtain a system S(15, 3, 2). It is known [19] from 1917 that there are exactly 80
non-isomorphic systems S(15, 3, 2). There is a standard numbering of these systems by the
indices from 1 to 80, related to the number of Pasch configurations (see [1]).

Given a Steiner system S = S(v, 4, 3), let β = β(S) denote the number of its pairwise
non-isomorphic DTS(v − 1). Clearly 1 ≤ β ≤ v for any SQS(v). A system SQS(v) is said
to be homogeneous (respectively, heterogeneous), if β = 1 (respectively, β = v). Among all
Steiner systems SQS(16) of rank at most thirteen, the only derived systems DTS(15) that we
found are those with numbers 1, 2, 3, 4, 5, 6, 7. All Steiner triple systems with these numbers
occur as the DTS(15) in the homogeneous SQS(16).

Denote by Nhom(i) the number of non-isomorphic homogeneous systems SQS(16) with
rank at most thirteen, whose derived systems are DTS(15) with number i, where i ∈
{1, 2, ..., 7}. Denote by N(β) the number of such non-isomorphic systems SQS(16) with
rank at most thirteen with given β. Denote by N(µ(i1), µ(i2), ..., µ(iβ)) the number of
non-isomorphic systems SQS(16) with rank at most thirteen which have µ(is) > 0 de-
rived systems with number is, where is ∈ {1, 2, ..., 7} for s = 1, ..., β, i.e. in our notation
Nhom(i) = N(µ(i) = 16).

§ 7. Non-isomorphic Steiner systems SQS(16) of rank 14 over F2

Theorem 1 There exists 684764 non-equivalent Steiner systems S(16, 4, 3) of length 16 and
rank 14.

Proof. Computational result. First, we construct all different Steiner systems using
(i, j, k)-admissible functions Λ. Then to any Steiner system SQS(16) we associate a set of
16 indices of the derived triple systems. We note that if the two sets that correspond to
an arbitrary two SQS(16) systems are different these systems are non-equivalent. Thus all
different Steiner systems are arranged into lists which correspond to the same set of 16
indices. The lists are pair-wise non-equivalent, i.e. two systems belong to the different lists
are non-equivalent. �

§ 8. Resolvability

The general resolvability problem for SQS(v) can be stated as follows. A Steiner sys-
tem S(v, 4, 3) is called (t, λ)-resolvable if its block set B can be partitioned into r subsets
B1, B2, ..., Br such that (S, Bi) is a t-design T (v, 4, t, λ) for all i. It is clear that

|B|
r

=

(
v
t

)(
4
t

) · λ.
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For the case of systems S(v, 4, 3) there are two possibilities: t = 1 or t = 2. Denote (t, λ)-
resolvable SQS(v) by RSQS(t, λ, v). If (t, λ) = (1, 1) such SQS(v) is also called resolvable,
and if SQS(v) is ((t, 1)-resolvable simultaneously for t = 1 and 2 it is also called double
resolvable. The first infinite family of double resolvable SQS(v) for all v = 4m was given
in [21] (see also [11] and references there). Next, we would like to show that all systems
SQS(16) of rank 14 over F2 are resolvable.
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