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Abstract
This paper focuses on the convervence problem of asynchronous

linear iterations. A stronger version of the necessity part of the clas-
sical Chazan-Miranker theorem is proved and new results for special
classes of iteration matrices are also presented.
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1 Introduction and Terminology

1.1 Introduction

In this paper we focus on convergence criteria for linear asynchronous itera-
tions. For a matrix A ∈ IRN×N , partitioned as (Aij)m×m, where Aij ∈ IRni×nj ,
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ni ≥ 1 and
∑m

i=1 ni = N , the asynchronous linear iteration is given by:

xi(k + 1) =

{ ∑m
j=1 Aijxj(k − d(i, j, k)), if i ∈ S(k),

xi(k), otherwise ,

k = 0, 1, 2, . . . . (1)

where d(i, j, k) ≥ 0 are nonnegative integers, S(k) are nonempty subsets of
{1, · · · , m}, the initial vectors are specified by x(0) = x(−1) = . . .. Hence-
forth, we write the initial vector x(0) to abbreviate reference to this set of
equal initial vectors. We refer to the d(i, j, k) as iteration delays and S(k)
as updating sets. Note that the iteration (1) is linear with constant coef-
ficient matrices A = (Aij) but it is non-stationary since the delays d(i, j, k)
are time-varying.

The interpretation of (1) in the modeling of block-iterative numerical
methods implemented on parallel computers is as follows. Suppose we have
a parallel computer consisting of m processors, assign xi and Aij, 1 ≤ j ≤ m,
to processor i, at iteration k + 1, processor i receives the value of xj from
processor j for all 1 ≤ j ≤ m, calculates x(k + 1) using the right hand
side of (1), where d(i, j, k) represents the iteration steps that processor j
needs to transfer its value of xj to processor i at iteration k + 1. For further
discussion, see [1, 2]. The equation (1) also models a discrete-time system
with time-varying delays in the interconnections [3].

Since Chazan and Miranker proposed their Chaotic Relaxation model in
1969 [4], numerous asynchronous models have been proposed and successfully
applied to some practical problems, in the area of parallel and distributed
computation, such as solutions of systems of linear and nonlinear equations,
calculation of fixed points of nonlinear functions, optimization, eigenprob-
lems, neural networks and some discrete problems. A comprehensive account
of the western literature on asynchronism can be found in [1, 2], while both
Russian and Western literature are discussed in [5].

The first purpose of this paper is to classify some kinds of asynchronous
iterative schemes. The second is to propose some new convergence results
under this classfication framework.

1.2 Terminology

The assumptions usually made in the study of linear asynchronous systems
(1) can be grouped into three classes.
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1.2.1 Iteration Delays

Using terminology similar to that of [6], we say that the iteration delays
d(i, j, k) are admissible if

lim
k→∞

k − d(i, j, k) = ∞ for all i, j, (2)

and regulated if there exists a nonnegative integer D such that

0 ≤ d(i, j, k) ≤ D for all i, j, k (3)

Conditions (2) and (3) say that there is no iteration vector which will be
used infinitely often. Clearly, condition (2) implies (3).

If for all i, j, k, the delays d(i, j, k) = 0, we call the iteration (1) a zero-
delay iteration, otherwise it is called an iteration with delays.

If iteration delays are regulated, the system (1) with delays can always
be written as a non-stationary zero-delay system in IRN(D+1) by stacking
x(k), · · · , x(k−D) as one ‘big’ vector X(k) ∈ IRN(D+1), however, in this case,
the coefficient matrices must, in general, be time-varying. See, for example,
[7] for this kind of approach.

1.2.2 Updating Sets

The updating sets S(k) are called admissible if

∞⋃
k=K

S(k) = {1, · · · , m}, for any K (4)

and regulated if there exists a K ≥ 0,

i+K⋃
k=i

S(k) = {1, · · · , m}, for all i. (5)

Condition (4) says that every subvector should be updated infinitely often,
so it is also known as a nonstarvation condition in the literature. Condition
(5) says that every component should be updated at least once in any K + 1
iteration steps.

The updating sets are called periodic if there exists a positive integer T
such that

S(k + T ) = S(k) for all k, (6)
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and aperiodic otherwise.
The synchronous iterations are iterations of the type (1) with no delays

and the updating sets S(k) = {1, . . . ,m} for all k. All other iterations are
referred to as asynchronous. It is sometimes useful to specify the kind
of asynchronism being considered by adding some qualifiers, e.g. zero-delay
asynchronism is a very important special case that has been much studied,
see, e.g. [5, 8, 9]. Examples of the use of this terminology can be found in
section 1.3 below.

1.2.3 Iteration Matrix

We recall that the iteration matrix A in IRN×N is partitioned as A = (Aij)m×m

where Aij ∈ IRni×nj , ni > 0 and
∑m

i=1 ni = N . The partitioning is referred
to as pointwise if m = N (i.e. ni = 1 for all i). If m = 1, the matrix
A is said to be unpartitioned, and for 1 < m < N , we say that A is
block-partitioned.

From the point of view of structure, iteration matrices can be divided
into classes of nonnegative, symmetric, symmetrizable, triangular, strictly
triangular, irreducible matrices, etc., etc.

In terms of the spectral radius of A, ρ(A), or the norm of A, ‖A‖, we
encounter the following kinds of conditions: ρ(A) < 1, ρ(|A|) < 1 where
|A| ≡ (|aij|), ρ(A) = 1, and for the block form, ρ(H) < 1 with H = (hij)m×m

and hij = ‖Aij‖. Here the norms are properly chosen induced operator
norms.

Matrix A is called semiconvergent if limk→∞Ak exists, [10, p. 152].
In this case, we use A∞ to denote this limit. The necessary and sufficient
condition for A to be semiconvergent is that:

1) its spectral radius, ρ(A), is less than or equal to unity, and

2) if ρ(A) = 1, then all the elementary divisors associated with the eigen-
value 1 of A are linear; that is rank (I − A)2 = rank (I − A), and

3) if ρ(A) = 1 then λ is an eigenvalue of A with |λ| = 1 implies λ = 1.

1.3 Some Examples

The terminology introduced above can be exemplified in the context of it-
erative methods for linear systems of equations. For example, if in (1), the
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updating set is a singleton given by S(k) = {i(k) := k(mod N) + 1 }, and
all the delays d(i(k), j, k) = i(k) − 1, then the equation (1) represents the
sequential block Jacobi iteration. If S(k) = {1, · · · , m} , d(i, j, k) = 0 for all
i, j, k, we have the parallel block Jacobi iteration.

If S(k) = {i(k) := k(mod N)+1 }, d(i, j, k) = min(k−1, r−1) for some
r, 1 ≤ r ≤ N , (1) is called a periodic asynchronous scheme, see [4] and [11].
The classical Gauss-Seidel iteration is a periodic asynchronous scheme with
r = 1.

If in (1), d(i, j, k) = 0, i.e., the zero delay case, it is also referred as a
Serial Model [2] and if there is only one element in set S(k) for all k, it is
called a free-steering method by Ostrowski [12]. The Gauss-Seidel method
is also a special case of the free-steering method.

If the iteration delays and the updating sets are both regulated and there
is no self iteration delay, i.e., d(k, i, i) = 0 for all k, i, then (1) is called a
partially asynchronous linear system. Sometimes partial asynchronism
is also defined allowing self-delays, i.e. S(k) and d(i, j, k) are only required
to be regulated [7]. Correspondingly, if iteration delays and the updating
sets are only required to be admissible, the system is called totally asyn-
chronous, see [1] for details.

2 Convergence Results

In this section, we present new convergence results on special cases of the
asynchronous linear iterations of the type (1). Some related results given
earlier are also discussed.

2.0 General Theorems

We first present the classical result of Chazan and Miranker [4].

Theorem 1 Consider equation (1) in the pointwise case, i.e. m = N ,
1) If ρ(|A|) < 1, and the iteration delays and updating sets are both

admissible, then for every initial vector x(0), the sequence of vectors x(k)
determined by (1) converges to zero vector.

2) If ρ(|A|) ≥ 1, there exists a sequence of admissible iteration delays and
a sequence of admissible updating sets such that for some initial vector x(0),
x(k) determined by (1) does not converge to zero.
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We prove the following stronger form of part 2) of the above theorem
in which the admissible iteration delays are replaced by regulated iteration
delays with a bound D of 1.

Theorem 2 If ρ(|A|) ≥ 1, there exists a linear asynchronous iteration with
regulated iteration delays and iteration delay bound D = 1 that x(k) that does
not converge to zero.

Bertsekas and Tsitsiklis [1] also gave a similar result with D = 2. The
idea of our proof is similar to theirs, but the details of the construction of a
divergent asynchronous sequence are not the same.

To prove Theorem 2, we first give a lemma which was also used in [1].

Lemma 3 Denoting A+ and A− such that A++A− = A and A+−A− = |A|.
Let A satisfy:

m∑
j=1

|aij| ≥ 1, for all i. (7)

If there exists some k0 ≥ 0 such that x(k0) > 0, x(k0 + 1) < 0, then for the
asynchronous iteration:

x(k + 1) = A−x(k) + A+x(k − 1), k = k0 + 1, · · · , (8)

with initial vectors x(k0) and x(k0 +1), the sequence of vectors x(k) does not
converge to zero.

Proof. Set
α = min

1≤i≤N
{ |xk0

i |, |xk0+1
i | }.

By condition of Lemma, α > 0 and besides

x(k0) ≥ αe > 0, x(k0 + 1) ≤ −αe < 0 (9)

where e is a vector with all of its components equal 1. It is easy by induction
to show that for k = 0, 1, . . . the following relations

x(k0 + 2k) ≥ αe > 0, x(k0 + 2k + 1) ≤ −αe < 0 (10)

are valid.
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Proof. of Theorem 2. We only need to prove the existence of asynchronous
linear iterations not convergent to zero, under the condition ρ(|A|) ≥ 1. If
1 ∈ σ(A) where σ(A) is the spectrum of A, then the synchronous iteration
(which is a special case of an asynchronous iteration) defined by

x(k + 1) = Ax(k), k = 0, 1, 2, . . .

where x(0) is an eigenvector corresponding to the eigenvalue 1 of A, deter-
mines the sequence x(k) = x(0),∀k, which does not converge to the zero
vector. So, without loss of generality, suppose that 1 6∈ σ(A) (i.e. I−A non-
singular), and also that |A| is irreducible. There exists a positive eigenvector
v ∈ IRN of matrix |A|, such that |A|v = ρ(|A|)v, see [10]. With renormal-
ization of the basis elements in IRN we can achieve that the vector v will be
the vector with all components 1, thus the condition (7) is satisfied. Since
(I − A) is nonsingular, there exists a vector y such that

(I − A)y = v.

This vector y is used to define the four asynchronous sequences: r(k), s(k),
t(k) and u(k) below:

r(0) = y,
r(1) = Ar(0) = Ay,
r(2) = A−r(1) + A+r(0) = (A−A + A+)y,
r(3) = A−r(2) + A+r(1) = (A−(A−A + A+) + A+A)y,
r(k + 1) = A−r(k) + A+r(k − 1), k = 3, 4, . . . ,

s(0) = y,
s(1) = As(0) = Ay,
s(2) = A+s(1) + A−s(0) = (A+A + A−)y,
s(3) = A−s(2) + A+s(1) = [A−(A+A + A−) + A+A]y,
s(k + 1) = A−s(k) + A+s(k − 1), k = 3, 4, . . . ,

t(0) = y,
t(1) = At(0) = Ay,
t(2) = A−t(1) + A+t(0) = (A−A + A+)y,
t(3) = A+t(2) + A−t(1) = [A+(A−A + A+) + A−A]y,
t(k + 1) = A−t(k) + A+t(k − 1), k = 3, 4, . . . ,
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u(0) = y,
u(1) = Au(0) = Ay,
u(2) = A+u(1) + A−u(0) = (A+A + A−)y,
u(3) = A+u(2) + A−u(1) = [A+(A+A + A−) + A−A]y,
u(k + 1) = A−u(k) + A+u(k − 1), k = 3, 4, · · · .

For a scalar β, construct the following sequence of vectors:

w(k) = r(k)− s(k)− βt(k) + βu(k) k = 0, 1, 2, . . . . (11)

By calculation,

w(0) = 0,
w(1) = 0,
w(2) = (1− β)ρ(|A|)v,
w(3) = −ρ2(|A|)v + (1− β)A+ρ(|A|)v,
w(k + 1) = A−w(k) + A+w(k − 1), k = 3, 4, . . .

Now choosing the value β ∈ (0, 1) sufficiently close to 1, we get that the
components of the vector w(2) are strictly positive, and the components of
the vector w(3) are strictly negative. Therefore by Lemma 3, the sequence
of vectors w(k), k = 0, 1, · · · , cannot be convergent to zero. Finally, noting
that the sequence w(k) is a linear combination of the sequences r(k), s(k),
t(k), u(k) (see (11)), we conclude that at least one of the sequences r(k),
s(k), t(k), u(k) does not converge to zero.

Strikwerda [13] recently strengthened the Chazan-Miranker result in an-
other direction: if ρ(|A|) ≥ 1, there exists a linear asynchronous iteration
which does not converge to 0, such that for all k, (i) there is only one ele-
ment in S(k), (ii) d(i, j, k) have same value for same i, k, (iii) D(i, j, k) ≤ N2.

A generalization of Theorem 1 to the block-partitioned case is the follow-
ing:

Theorem 4 Let H = (hij) with hij = ‖Aij‖, where the norm is any induced
operator norm. If ρ(H) < 1, and iteration delays and the updating sets are
both admissible, then for any initial vector x(0), the sequence of vectors x(k)
determined by (1) converges to 0.

This theorem was proved for admissible iteration delays and updating
sets by El Tarazi [14] using an induction proof and for regulated delays using
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a Liapunov function approach in [7]. Note that ρ(A) ≤ ρ(H) [15, p.175], and
also that in this theorem, if m = N , this result reduces to the sufficiency
part of the Chazan-Miranker result.

2.1 Single Delay and Unpartitioned Case

Concerning Theorem 1, Chazan and Miranker [4] commented: Clearly weaker
conditions could be sufficient to guarantee convergence of a smaller class
of chaotic schemes than the full class. Any finer classification of chaotic
schemes yielding successively stronger convergence results would certainly be
of some interest. From theorem 2 we learn that even in the case of regulated
iteration delays with iteration delay bound of unity, there is no convergence
result better than ρ(|A|) < 1.

However, weaker conditions than ρ(|A|) < 1 may be obtained in the
special case of a single delay and unpartitioned system matrix (m = 1) and
in some other special cases. We have the following corollary to Theorem 4.

Corollary 5 Consider the unpartitioned asynchronous linear iteration with
a single iteration delay sequence, d(k),

x(k + 1) = Ax(k − d(k)). (12)

If the sequence of iteration delays is admissible, i.e.

lim
k→∞

k − d(k) = ∞,

and if ρ(A) < 1, then for any initial vector x(0), the sequence of x(k) (1)
converves to 0.

Proof. Because ρ(A) < 1, there always exists a norm ‖ ‖∗ such that ‖A‖∗ <
1. Since m = 1, H is a 1-by-1 matrix and ρ(H) = H = ‖A‖∗ < 1.

The following proposition is the analog of Corollary 5 for semiconvergent
matrices.

Proposition 6 If the matrix A is semiconvergent, and the remaining con-
ditions on the asynchronous linear iteration are the same as in Corollary 5,
then for the initial vector x(0), the sequence x(k) converges to A∞x(0).
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Proof. Each x(k) can be written as x(k) = Ac(k)x(0) with c(k) is an integer
such that limk→∞ c(k) = ∞.
Remark. In this proposition, and in some results in section 2.3 which will use
this proposition, the initial vectors should be same, i.e. x(0) = x(−1) = · · ·.
Otherwise, the iteration vectors may oscillate among the neighbours of some
fixed vectors A∞x(0), A∞x(−1), . . . .

2.2 Symmetric Matrix and Zero Delay Case

Consider the following result from [9]:

Theorem 7 Suppose that, in (1), A is symmetric with ρ(A) < 1, d(i, j, k) =
0, and the updating sets are admissible. Then for any initial vector x(0), the
sequence x(k) converges to 0.

This theorem is now generalized to the case where A is block-diagonal
symmetrizable (Corollary 8 below). A matrix A is block-diagonal sym-
metrizable if A = A−1

1 A2 with A1 symmetric positive definite and block
diagonal, A2 symmetric, and A1, A2 conformally partitioned.

Corollary 8 If, in (1), A is block-diagonal symmetrizable, and the remain-
ing assumptions in the theorem 7 hold, then for any initial vector x(0), the
sequence x(k) converges to 0.

Proof. Let B = A
−1/2
1 A2A

−1/2
1 and y(k) = A

1/2
1 x(k): now, using the result

of Theorem 7, we are done.
Motivated by Lubachevsky and Mitra [16], who discussed the convergence

of an asynchronous iteration for a nonnegative matrix with unity spectral
radius, we consider the case in which the iteration matrix A is symmetric
and ρ(A) = 1. Let P1 denote the orthogonal projector on the eigenspace
corresponding to the eigenvalue(s) 1, and P0 the orthogonal projector on the
orthogonal complement of this eigenspace.

Theorem 9 Suppose that A is symmetric and

(a) −1 is not an eigenvalue of A,

(b) there is no iteration delay, i.e. d(i, j, k) = 0,
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(c) the updating sets are regulated,

then for any initial vector x(0), the sequence x(k) determined by (1) satisfies:

P0x(k) → 0. (13)

Proof. Consider the quadratic function F (x) = xT (I − A)x as in [9]. For
any x,

F (x) = F (P0x) ≥ 0. (14)

Denote A(k) ≡ (Bij) as

Bij =

{
(I)ij if i 6∈ S(k),
Aij otherwise,

where (I)ij is the (i, j)-th block element of the identity matrix in IRN×N . For
any x, by [9, Lemma 3, p.313]

F (x)− F (A(k)x) = (x− A(k)x)T (I + A)(x− A(k)x). (15)

Since ρ(A) < 1 and −1 is not an eigenvalue of A, the matrix (I+A) is positive
definite, so for the sequence x(k), we have F (x(k)) ≥ F (x(k + 1)) ≥ 0,
implying that F (x(k)) converges to some F ∗ ≥ 0. If F ∗ = 0, from (14), we
have

lim
k→∞

F (P0x(k)) = lim
k→∞

F (x(k)) = 0.

Since (I−A) is symmetric positive definite on P0IR
N , we have the conclusion.

Suppose F ∗ > 0. Once again, since the matrix (I − A) is symmetric
positive definite on P0IR

N , {P0x(k)}k is a bounded sequence. Denote y(k) =
P0x(k): there exists a convergent subsequence {y(i(k))} which converges to
y∗ 6= 0, y∗ ∈ P0IR

N . Let F (y∗) = F ∗. For arbitrarily small ε > 0, there exists
a K1, such that for i(k) ≥ K1, F (y(i(k))) − F ∗ < ε and ‖y(i(k)) − y∗‖ < ε.
Suppose for k = K1, · · · , K2−1, A(k)y∗ = y∗, A(K2)y

∗ 6= y∗. If A(K1)y
∗ 6= y∗

we let K2 = K1. We assert that K2 −K1 < K, where K is defined in (5). If
this is not the case, since

K2−1⋃
k=K1

S(k) = {1, · · ·m},
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and A(k)y∗ = y∗ for k = K1, · · · , K2 − 1, therefore Ay∗ = y∗ and F (y∗) = 0,
this contradicts F (y∗) > 0.

For any x, A(k)P1x = P1x and P0P1 = 0, thus

‖y(K1 + 1)− y∗‖
= ‖P0x(K1 + 1)− y∗‖
= ‖P0A(K1)(P1x(K1) + y(K1))− y∗‖
= ‖P0(A(K1)y(K1)− y∗)‖
≤ ‖A(K1)(y(K1)− y∗)‖ ≤ Cε,

where the constant C ≥ 1 is independent of k because there is only a finite
number of different A(k). By induction, we can prove that

‖y(K2)− y∗‖ ≤ CK2−K1ε ≤ CKε.

Using (15), we have

F (y(K2))− F (y(K2 + 1))

= [y(K2 + 1)− y(K2)]
T (I + A)[y(K2 + 1)− y(K2)]

≥ [λmin(I + A)] ‖P0A(K2)y
∗ − y∗ + (P0A(K2)− I)(y(K2)− y∗)‖2

≥ λmin(I + A) ‖P0A(K2)y
∗ − y∗‖2 − C ′ε

where λmin(I +A) > 0 is the minimum eigenvalue of I +A and C ′ is another
constant independent of k. Then

F (y(K2 + 1))

≤ F (y(K2))− [λmin(I + A)] ‖P0A(K2)y
∗ − y∗‖2 + C ′ε

≤ F ∗ + (C ′ + 1)ε− [λmin(I + A)] ‖P0A(K2)y
∗ − y∗‖2.

This contradicts F (y(K2 + 1)) ≥ F ∗ when ε is small enough.
Remark. We conjecture that limk→∞ x(k) exists. The following proposition
shows that the conjecture is true with an additional assumption:

Proposition 10 Suppose P0x(k) has a linear rate of convergence in the
sense that: there exists a fixed integer K̃ ≥ 1 and a constant 0 < c < 1,
such that

‖P0x(k1)‖ ≤ c‖P0x(k2)‖ for all k2 ≥ 0, k1 ≥ k2 + K̃,
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where the norm ‖ ‖ is an induced norm such that

|x| ≤ |y| ⇒ ‖x‖ ≤ ‖y‖. (16)

Then the sequence of iteration vectors {x(k)}∞k=0 converges.

Proof. For any k > 0, from the property (16) of the norm,

‖x(k)− x(k + 1)‖
≤ ‖x(k)− Ax(k)‖
= ‖(I − A)x(k)‖ = ‖(I − A)P0x(k)‖
≤ ‖I − A‖ ‖P0x(k)‖.

Therefore, for any k2 ≥ 0, k1 > k2

‖x(k1)− x(k2)‖
≤ ‖x(k1)− x(k1 − 1)‖+ · · ·+ ‖x(k2 + 1)− x(k2)‖
≤ ‖I − A‖ (‖P0x(k1 − 1)‖+ · · ·+ ‖P0x(k2)‖)
≤ (1 + c + c2 + · · ·)K̃ ‖I − A‖ ‖P0x(k2 − K̃)‖

≤ K̃

1− c
‖I − A‖ ‖P0x(k2 − K̃)‖.

From Theorem 9,
lim

k2→∞
‖P0x(k2 − K̃)‖ = 0,

so applying Cauchy’s theorem, we can obtain the conclusion.

2.3 Matrix A Triangular or Block Triangular

In this section, we consider the case in which the iteration matrix A is tri-
angular or block triangular. All the results in this subsection can be simply
applied to the case in which A is (block) similar (via permutation) to a tri-
angular matrix, i.e. there exists a permutation matrix P such that P T AP
is (block) triangular. Of course, we assume that the partitioning in block
triangular form is conformal with the partitioning in (1). The results may
be viewed as continuous valued analogs of some results of Robert [17] on
discrete data.
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Theorem 11 If A is lower block triangular and ρ(Aii) = 0 for i = 1, · · · , N ,
the iteration delays and the updating sets are admissible, then for any initial
vector x(0), x(k) determined by (1) converges to 0 in a finite number of
iteration steps.

Note that the assumption that A is strictly lower triangular (cf. [17]) is
unnecessary in this theorem.

Theorem 12 Let A be lower block triangular, and Aii, i = 1, · · · , m1 be
semiconvergent matrices, Aij = 0 for i = 1, · · · , m1, j = 1, · · · , i−1, ρ(Aii) <
1, i = m1 +1, · · · , m, for (1), and if the iteration delays and the updating sets
are both admissible, then for any initial vector x(0), the sequence of vectors
x(k) converges to A∞x(0).

Corollary 13 For a block triangular matrix A with ρ(A) < 1 and admissible
iteration delays and updating sets, for any initial vector x(0), the sequence
of vectors x(k) converges to 0.

These results on triangular matrices can be proved by using Corollary 5
and Proposition 6.

3 Conclusions

In this paper, we strengthened both the classical Chazan-Miranker result [4]
on the convergence of asynchronous linear iterations and the recent proof
due to Bertsekas and Tsitsiklis [1] by showing that regulated iteration delays
with delay bound equal to unity are sufficient to cause nonconvergence of
asynchronous iterations in the case when ρ(|A|) ≥ 1. We have given some
convergence results for asynchronous linear iterations. Our convergence con-
ditions are weaker than the classical condition ρ(|A|) < 1, although some
other assumptions on A (e.g. A is symmetric or triangular, etc.), or on the
iteration delays (e.g. regulated or zero), or on updating sets are needed.
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